首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
中国冰川1号产适冷蛋白酶耐冷菌的分离鉴定及产酶条件   总被引:6,自引:0,他引:6  
从中国冰川 1号样品分离获得一株产适冷蛋白酶耐冷菌株SYP- A2 - 3,鉴定为蜡状芽孢杆菌 (Bacilluscereus)。该菌生长温度范围为 0~ 38℃ ,最适生长温度 2 5℃ ,而最适产酶温度为 15℃。所产蛋白酶为中性金属蛋白酶 ,最适催化温度为 4 2℃ ,低温催化活力较高 ,适宜作用pH为 7. 0~ 8 .5 ,SDS PAGE测定的分子量为 34 2kD。SYP A2 3产酶条件的研究结果显示酪蛋白是较好的氮源 ,葡萄糖、淀粉是较好的碳源 ,产酶最佳pH为 6. 5~ 7. 0 ,在优化的条件下 ,15℃摇瓶产酶达到 380 0U mL ,5L发酵罐通气培养产酶达 4 80 0U mL。  相似文献   

2.
产低温碱性蛋白酶海洋适冷菌SY的筛选   总被引:6,自引:0,他引:6  
从连云港海域、港口、远洋捕捞船及鱼市等地采集的海水和各类海鱼、贝类等样品中分离到217株产蛋白酶的细菌,并从中得到1株产低温碱性蛋白酶的海洋适冷细菌—SY。研究表明,该菌株最适生长温度和最适产酶温度均在15℃左右,0℃下仍可生长;具有一定的耐盐性和嗜盐性,无盐条件不能生长,在3%的NaCl盐浓度时,生长达到最高峰;最适生长和最适产酶pH均为8.0;SY菌所产的蛋白酶可能为一种丝氨酸蛋白酶,酶最适作用温度为50℃,最适作用pH为9.0;酶的热稳定性差,50℃保温20min,酶活下降40%。  相似文献   

3.
通过酪蛋白平板法从实验室极地微生物资源库中筛选到130株在低温条件(4℃)下具有蛋白酶活性的菌株,并对部分酪蛋白水解圈较大的菌株进行了酶活测定和系统发育分析。发现酶活较高的8株菌分别属于假交替单胞菌属(Pseudoalteromonas)、科尔韦尔氏菌属(Colwellia)、希瓦氏菌属(Shewanella)、嗜冷杆菌属(Psychrobacter)。选择低温蛋白酶活性较高的菌株Pseudoalteromonas sp.QI-1为研究对象,以酪蛋白为反应底物对其所产低温蛋白酶粗酶酶性质进行初步研究。结果表明:QI-1低温蛋白酶酶活最适反应温度为40℃,在0℃时保持10%的相对酶活,酶活最适反应pH为10.0;其催化作用不需要金属离子的参与;热稳定性极差,在60℃放置15 min即完全失活。  相似文献   

4.
从茶树内生真菌筛选产漆酶的菌株,分析不同营养因素和培养条件对菌株漆酶酶活力的影响。采用6种显色底物的平板初筛和酶活测定的复筛方法,从15株茶树内生真菌菌株中筛选获得1株产漆酶酶活较高的菌株CSN 4。单因素分析结果显示,液态发酵条件下菌株CSN-4适宜的主要培养基成分是麸皮和蛋白胨;菌株CSN-4分别在麸皮30 g/L、蛋白胨2.5 g/L、CuSO4·5H2O 0.015 g/L和茶水6 g/L时发酵产漆酶酶活最高。发酵条件试验结果表明,菌株CSN-4分别在接种量为6个菌饼(直径6 mm)、装液量60 mL/250 mL、pH 4.8、摇床转速120 r/min,培养温度为28 ℃时产漆酶酶活较高。在培养基中添加麸皮和茶水对菌株CSN-4产漆酶有明显的促进作用。经过培养基成分及培养条件优化后,菌株CSN 4产漆酶酶活显著升高,达到2 417 U/L。  相似文献   

5.
研究了营养因子及环境条件对中国冰川1号耐冷菌BacilluscereusSYP-A3-2产低温蛋白酶的影响。结果表明对该菌产酶影响较大的因素分别是温度、酪蛋白浓度和pH,在酪蛋白浓度0·8%、pH7、15℃下摇瓶发酵48h产酶水平可达3,800U/mL。  相似文献   

6.
为提高黏质沙雷氏菌株S68-CM5产几丁质酶能力,对产酶发酵条件进行优化研究。利用Plackett-Burman设计和响应面法对培养基和发酵条件进行摸索。结果显示,获得最佳发酵产酶培养基:胶体几丁质1.5%,牛肉膏7 g/L,酵母膏2 g/L,葡萄糖8 g/L,氯化钠3.5 g/L,蛋白胨2 g/L,磷酸氢二钾3.5 g/L;最佳产酶培养条件为:p H6.88,温度27.32℃,摇床转数155.82r/min,培养时间60 h,接种量1%,装液量50 m L/250 m L。优化后产酶量达到7.131 U/m L,比优化前产酶量提高了1.43倍。  相似文献   

7.
生物圈的80%是由低温环境构成,大约90%的海水平均温度为5℃或者更低,这里孕育着极为丰富的微生物。根据微生物对环境温度的耐受性和其生长温度上限/下限的不同,将微生物分为嗜冷微生物和适冷微生物两大类。由这些微生物产生的适冷酶在低温下具有较高的催化效率和特异性,因而在生物技术领域具有巨大的应用潜力和开发价值。总结了近5年适冷酶新酶的筛选、发现及适冷酶稳定性的改造和低温表达系统等方面的最新研究进展,并对该领域的研究方向进行了展望。  相似文献   

8.
一株产蛋白酶南极耐冷细菌的筛选及研究   总被引:4,自引:0,他引:4  
从南极中山站地区分离到1株产胞外酸性蛋白酶的革兰氏阴性杆菌,该菌能在7度,20度及30度生长并产酶;其最适生长温度在20度左右,不耐盐。碳源物质中,葡萄糖对菌株的生长有利,但对蛋白酶的生成影响不大。氮源物质中,蛋白胨对菌株的生长及蛋白酶的生成效果最好,而(NH4)2SO4则是效果最好的无机氮源。该菌所产胞外蛋白酶占其蛋白酶总量的83.2%,蛋白酶反应的最适温度为40度,最适PH为5;酶活力在35度以下保持稳定,直接以酪蛋白液为培养基,在20度条件下对该菌进行摇瓶培养,6d后菌液浓度及产酶量皆到达高值并基本保持稳定,而以LB培养基(Luria-Bertani培养基)在相同条件下培养该菌,3d后菌液浓度即到达高值并基本保持稳定,酶活力则在2d后到达高值。  相似文献   

9.
适冷微生物及其适冷机制研究进展   总被引:7,自引:0,他引:7  
地球上许多生境为永久低温或季节性低温环境,适冷微生物在自然界中广泛存在。适冷微生物在环境净化、饲料、食品、奶制品、化妆品、皮革加工、洗涤等行业中具有广泛的应用前景。对适冷微生物的多样性、适冷的分子基础和适冷代谢机制进行了综述。  相似文献   

10.
利用苯胺蓝鉴别培养基及产酶培养基进行菌种筛选,从甘肃兴隆山分离得到的10株菌株中筛选到一株高产木质素酶活力的菌株L-520,对该菌株进行16S rDNA鉴定,确定该菌为荧光假单胞杆菌(Pseudomonas fluorescens)。分别考察了接种量、装液量,初始pH对L-520发酵产酶的影响,以及碳源、氮源对木质素酶活力的影响。结果得到最佳培养基为:蔗糖1%,NH_4Cl 0.2%,KH_2PO_4 0.1%,MgSO_4?7H_2O 0.05%。优化后的发酵条件为:初始pH 5,接种量3%,装液量50%。经发酵工艺优化后,漆酶(Lac)、木质素过氧化物酶(LiP)、锰过氧化物酶(MnP)三种酶活分别为16.43 U/L,106.32 U/L,95.89U/L,与初始酶活相比分别提高了8.7、14.74、11.09倍。本研究筛选得到的荧光假单胞杆菌有助于染料废水中偶氮染料的降解。  相似文献   

11.
A fungal strain, Aspergillus terreus strain GA2, isolated from an agricultural field cultivating sweet sorghum, produced feruloyl esterase using maize bran. In order to obtain maximum yields of feruloyl esterase, the solid state fermentation (SSF) conditions for enzyme production were standardized. Effective feruloyl esterase production was observed with maize bran as substrate followed by wheat bran, coconut husk, and rice husk among the tested agro-waste crop residues. Optimum particle size of 0.71- 0.3 mm and moisture content of 80% favored enzyme production. Moreover, optimum feruloyl esterase production was observed at pH 6.0 and a temperature of 30 degrees C. Supplementation of potato starch (0.6%) as the carbon source and casein (1%) as the nitrogen source favored enzyme production. Furthermore, the culture produced the enzyme after 7 days of incubation when the C:N ratio was 5. Optimization of the SSF conditions revealed that maximum enzyme activity (1,162 U/gds) was observed after 7 days in a production medium of 80% moisture content and pH 6.0 containing 16 g maize bran [25% (w/v)] of particle size of 0.71-0.3 mm, 0.6% potato starch, 3.0% casein, and 64 ml of formulated basal salt solution. Overall, the enzyme production was enhanced by 3.2-fold as compared with un-optimized conditions.  相似文献   

12.
AIMS: Isolation and screening of extreme halophilic archaeon producing extracellular haloalkaliphilic protease and optimization of culture conditions for its maximum production. METHODS AND RESULTS: Halogeometricum sp. TSS101 was isolated from salt samples and screened for the secretion of protease on gelatin and casein plates containing 20% NaCl. The archaeon was grown aerobically in a 250 ml flask containing 50 ml of (w/v) NaCl 20%; MgCl(2) 1%; KCl 0.5%; trisodium citrate 0.3%; and peptone 1%; pH 7.2 at 40 degrees C on rotary shaker. The production of enzyme was investigated at various pH, temperatures, NaCl concentrations, metal ions and different carbon and nitrogen sources. The partially purified protease had activity in a broad pH range (7.0-10.0) with optimum activity at pH 10.0 and a temperature (60 degrees C). The enzyme was thermostable and retained 70% initial activity at 80 degrees C. Maximum protease production occurred at 40 degrees C in a medium containing 20% NaCl (w/v) and 1% skim milk powder after 84 h in shaking culture. Enzyme secretion was observed at a broad pH range of 7.0-10.0. Addition of CaCl(2) (200 mmol) to the culture medium enhanced the production of protease. Protein rich flours proved to be cheap and good alternative source for enzyme production. Different osmolytes were tested for the growth and production of haloalkaliphilc protease and found that betaine and glycerol enhanced growth without secretion of the protease. Immobilization studies showed that whole cells immobilized in 2% alginate beads were stable up to 10 batches and able to secrete the protease, which attained maximum production within 60 h under shaking conditions. CONCLUSIONS: Halogeometricum sp. TSS101 secreted an extracellular haloalkaliphilic and thermostable protease. The optimum conditions required for maximum production are 20% NaCl, 1% skim milk powder and temperature at 40 degrees C. Addition of CaCl(2) (200 mmol) enhanced the enzyme production. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of haloalkaliphilic protease. SIGNIFICANCE AND IMPACT OF THE STudy: The low cost protein rich flours were used as an alternative carbon and nitrogen sources for enzyme production. Immobilization of halophilic cells in alginate beads can be used in continuous production of halophilic enzyme. The halophilic and thermostable protease from Halogeometricum sp. TSS101 is good source for industrial applications and can be a suitable source for preparation of fish sauce.  相似文献   

13.
Low cost fermentation media using agricultural by-products (wheat bran extract, rice bran extract and soybean meal extract) as a major nutrient source, were evaluated for the production of tyrosinase from the fungus Auricularia auricula in submerged culture. In single-factor experiments, three components (wheat bran extract, casein and CuSO4) were chosen to further optimize medium composition using response surface methodology (RSM). The central composite experimental results showed the following optimum medium composition: wheat bran extract 36.0 %, casein 1.1 g/l and CuSO4 0.13 g/l. Under these conditions, the highest tyrosinase activity was 17.22 U/ml, which was 2.1 fold higher than that obtained using the non-optimized medium. The present study is the first to report the statistical optimization of medium composition for production of tyrosinase by A. auricula using cheaper wheat bran extract as a major nutrient source. These results might provide a reference for the development of a cost-effective medium for commercial production of tyrosinase.  相似文献   

14.
Glucoamylase production has been investigated by solid-state fermentation of agro-industrial wastes generated during the processing of paddy to rice flakes (categorized as coarse, medium and fine waste), along with wheat bran and rice powder by a local soil isolate Aspergillus sp. HA-2. Highest enzyme production was obtained with wheat bran (264 +/- 0.64 U/gds) followed by coarse waste (211.5 +/- 1.44 U/gds) and medium waste (192.1 +/- 1.15 U/gds) using 10(6) spores/ml as inoculum at 28 +/- 2 degrees C, pH 5. A combination of wheat bran and coarse waste (1:1) gave enzyme yield as compared to wheat bran alone. Media supplementation with carbon source (0.04 g/gds) as sucrose in wheat bran and glucose in coarse and medium waste increased enzyme production to 271.2 +/- 0.92, 220.2 +/- 0.75 and 208.2 +/- 1.99 U/gds respectively. Organic nitrogen supplementation (yeast extract and peptone, 0.02 g/gds) showed a higher enzyme production compared to inorganic source. Optimum enzyme activity was observed at 55 degrees C, pH 5. Enzyme activity was enhanced in the presence of calcium whereas presence of EDTA gave reverse effect.  相似文献   

15.
An alkalophilic bacterial isolate identified as Bacillus pantotheneticus, isolated from saline-alkali soils of Avadh region of UP, India, was studied for the production of alkaline protease. The mutant of the isolated species showed 44% improved production over the parent strain. Organic nitrogen sources supported better protease production than the inorganic sources. The production of alkaline protease was (242 U/ml) in the medium containing molasses, which was comparable with molasses and wheat bran (285 U/ml) as carbon and nitrogen sources, respectively. Protease production was best at pH 10 and temperature 30 degrees C. The Km (for casein) was 11 mg/ml and Vmax was 380-microg tyrosine/ml/min. The enzyme was stable between pH 7 and 10.7 and temperature between 30 and 60 degrees C with a pH and temperature optimum at 8.4 and 40 degrees C, respectively. The results indicated that molasses was an optimal substrate for alkaline protease production.  相似文献   

16.
An obligatory alkalophilic Bacillus sp. P-2, which produced a thermostable alkaline protease was isolated by selective screening from water samples. Protease production at 30 °C in static conditions was highest (66 U/ml) when glucose (1% w/v) was used with combination of yeast extract and peptone (0.25% w/v, each), in the basal medium. Protease production by Bacillus sp. P-2 was suppressed up to 90% when inorganic nitrogen sources were supplemented in the production medium. Among the various agro-byproducts used in different growth systems (solid state, submerged fermentation and biphasic system), wheat bran was found to be the best in terms of maximum enhancement of protease yield as compared to rice bran and sunflower seed cake. The protease was optimally active at pH 9.6, retaining more than 80% of its activity in the pH range of 7–10. The optimum temperature for maximum protease activity was 90 °C. The enzyme was stable at 90 °C for more than 1h and retained 95 and 37% of its activity at 99 °C and 121 °C, respectively, after 1 h. The half-life of protease at 121 °C was 47 min.  相似文献   

17.
Aspergillus oryzae CFTRI 1480, an isolate from a spoiled moist sample of casein, produced 59,105 units of an extracellular proteinase/g dry mouldy bran (DMB) at 72 h in an arbitrarily formulated wheat bran medium in a solid state fermentation system. The enzyme production was significantly affected by mineral salt content and pH of the liquid used for moistening the wheat bran. Enzyme titres were enhanced 1.34-fold with the addition of 0.4% corn starch. Optimization of key parameters, i.e., initial moisture content, age and size of inoculum, increased the enzyme production to 191,869 units/g DMB and reduced the fermentation time to 48 h. Such high titres in a simple medium, surpassing most of the literature reports, indicate the industrial importance of the culture. The properties of acetone-precipitated enzyme, viz, the optimum pH of 10.0, more than 95% activity between pH 7.0 and 10.0, temperature optimum at 55° C and more than 90% activity between 10 and 27°C, are similar to those of commercially available fungal proteinases employed in animal feed, leather and other industries. Correspondence to: B. K. Lonsane  相似文献   

18.
N+注入选育黑曲霉益生菌及其突变菌株产酶条件的研究   总被引:13,自引:0,他引:13  
以益生菌株黑曲霉AN01为材料,经N 多次诱变得突变益生菌株AN03。结果表明,出发益生菌株AN01酸性蛋白酶、纤维素酶和果胶酶的酶活分别由原来的71.6Ug、141.7Ug和264.8Ug相继提高到996.5Ug、940.4Ug和906.5Ug。突变益生菌株AN03经传5代培养,产酶特性稳定。试验还研究了变突变益生菌株AN03最佳产酶条件,培养基为每升含麸皮105g,玉米芯105g,豆粕105g,氯化铵16g,pH5.0。30℃培养4d。  相似文献   

19.
对一株产低温碱性脂肪酶细菌(Pseudoalteromonas sp.BJ17)的发酵条件进行了优化,研究各种碳源及氮源对产酶的影响,应用正交实验优化其发酵培养基组成。结果表明:最佳培养基组成为淀粉12g/L,蛋白胨12g/L,酵母膏3g/L,酪蛋白2g/L。最佳培养温度为25℃,发酵时间为16h。  相似文献   

20.
An extracellular protease was produced under stress conditions of high temperature and high salinity by a newly isolated moderate halophile, Salinivibrio sp. strain AF-2004 in a basal medium containing peptone, beef extract, glucose and NaCl. A modification of Kunitz method was used for protease assay. The isolate was capable of producing protease in the presence of sodium chloride, sodium sulfate, sodium nitrate, sodium nitrite, potassium chloride, sodium acetate and sodium citrate. The maximum protease was secreted in the presence of 7.5 to 10% (w/v) sodium sulfate or 3% (w/v) sodium acetate (4.6 U ml−1). Various carbon sources including glucose, lactose, casein and peptone were capable of inducing enzyme production. The optimum pH, temperature and aeration for enzyme production were 9.0, 32 °C and 220 rpm, respectively. The enzyme production corresponded with growth and reached a maximum level during the mid-stationary phase. Maximum protease activity was exhibited in the medium containing 1% (w/v) NaCl at 60 °C, with 18% and 41% activity reductions at temperature 50 and 70 °C, respectively. The optimum pH for enzyme activity was 8.5, with 86% and 75% residual activities at pH 10 and 6, respectively. The activity of enzyme was inhibited by EDTA. These results suggest that the protease secreted by Salinivibrio sp. strain AF-2004 is industrially important from the perspectives of its activity at a broad pH ranges (5.0–10.0), its moderate thermoactivity in addition to its high tolerance to a wide range of salt concentration (0–10% NaCl).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号