首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
本文以非甾体抗炎药吲哚美辛为模型药物制备了骨架型缓释片剂,以体外溶出为检验指标,考察了甲壳胺的脱乙酰度、表观粘度及用量对药物释放的影响,并确定了甲壳胺的脱乙酰度及粘度范围。实验结果表明,缓释作用随脱乙酰度升高而降低;随用量增多而增强;粘度对药物释放的影响随脱乙酰度不同而不同。脱乙酰度为85%的甲壳胺,其缓释作用随表观粘度的增大而增大;脱乙酰度为75%的甲壳胺缓释作用随粘度升高而降低。  相似文献   

2.
通过扫描电子显微镜和Zeta电位仪对磁性纳米颗粒的形貌、粒径、表面电位等进行了表征。利用凝胶电泳阻滞试验分析磁性纳米颗粒与DNA的结合情况,研究磁性纳米颗粒对DNA的保护效果,运用MTT和流式细胞术分析磁性纳米颗粒对细胞的毒性。以绿色荧光蛋白基因为报告基因进行293T细胞的转染,研究磁性纳米颗粒与质粒DNA不同比例条件下对293T细胞的转染效率,并与脂质体(Lipofectamine2000)介导的转染进行比较分析。结果表明,磁性纳米颗粒与DNA可以稳定结合,可以保护DNA免受酶的消化作用,当磁性纳米颗粒与DNA比为1 1时,转染效率最高,优于脂质体(Lipotamine2000)介导的转染,且对细胞的毒害作用小于Lipotamine2000。  相似文献   

3.
壳聚糖作为基因药物载体的研究进展   总被引:5,自引:0,他引:5  
苏惠霜  王一飞 《遗传》2006,28(10):1321-1324
以壳聚糖及其衍生物作为基因的载体的转染效率受到许多因素的影响, 如复合物粒子大小、壳聚糖/DNA的比值、壳聚糖的分子量、脱乙酰度、转染过程中血清的浓度、介质的pH值等。对壳聚糖进行一定程度的修饰, 可以改变壳聚糖的转染效率。介绍了壳聚糖作为基因转移载体的转染条件, 转染效率和转染机制的研究情况及研究进展。  相似文献   

4.
聚乙烯亚胺(PEI)是一种具有良好生物安全性和生物相容性的非病毒载体,能高效转染肿瘤细胞。小环DNA是一种去除质粒细菌骨架,只含有目的基因表达框的环状DNA分子。与普通质粒相比,小环DNA具有表达效率高、持续时间长的优势。使用PEI包裹携带报告基因gfp和抑癌基因pten小环DNA载体,并利用各种技术手段分析了该传输系统的理化性质和生物学效应。凝胶阻滞实验、电镜实验及MTT实验分析结果表明利用PEI包裹小环DNA和质粒DNA体系性质无显著的差别,并且2种复合物对细胞毒性亦无明显差别;但是动态光散射实验结果显示由于PEI可以包裹更多数量的小环DNA,所以PEI包裹小环DNA形成的复合物粒径要略大于包裹质粒DNA形成的复合物粒径。荧光显微镜实验、real-time PCR分析和Western blotting分析结果表明,PEI包裹小环DNA形成的复合物对细胞的转染效率要远远高于PEI包裹质粒DNA所形成的复合物,并且小环所携带的外源基因的表达效率要远远高于质粒DNA所携带的外源基因的表达效率。实验结果表明,PEI包裹小环DNA形成的纳米颗粒在细胞转染过程中具有很高的表达效率,这一研究结果为PEI包裹小环DNA的非病毒载体系统在传输外源基因过程中的应用提供理论基础和技术支持。  相似文献   

5.
以外源红细胞生成素eDNA的表达产物为指标,研究了运载DNA和重组表达质粒的构象对电穿孔转染CHO细胞的效率的影响。结果250μg/ml的运载DNA可使外源基因表达水平提高3倍;线性化质粒DNA比超螺旋DNA更适合于用电穿孔方法获得永久表达。这一结果提示,运载DNA的存在和质粒DNA的线性化对提高电穿孔转染CHO细胞的效率是必需的。  相似文献   

6.
壳聚糖带正电荷,可与带负电荷的DNA结合形成纳米级的多聚复合物(纳米粒)。作为一种基因载体,壳聚糖对DNA具有很好的结合和保护作用,对生物体无毒、相容性好,被广泛应用于基因转染及基因预防和治疗中。壳聚糖的主要缺点是转染效率较低,但对其进行改性或修饰后,有可能提高其转染效率。  相似文献   

7.
以外源红细胞生成素cDNA的表达产物为指标,研究了运载DNA和重组表达质粒的构象对电穿孔转染CHO细胞的效率的影响.结果250mg/L的运载DNA可使外源基因表达水平提高3倍;线性化质粒DNA比超螺旋DNA更适合于用电穿孔方法获得永久表达.这一结果提示,运载DNA的存在和质粒DNA的线性化对提高电穿孔转染CHO细胞的效率是必须的.  相似文献   

8.
基因治疗是未来临床医学最具潜力的治疗方式,目前阻碍临床基因治疗发展的主要因素是缺乏安全和高效的基因载体,因此研究理想的非病毒转基因载体具有重要的意义.构建了由质粒DNA(D)-抗DNA抗体(A)-阳离子脂质体(C)组成的三元复合纳米基因载体(DAC),研究表明,三组分在磷酸缓冲液中可通过分子组装形成复合纳米胶束,DAC在细胞培养中表现出显著高效的基因表达,DAC在血管平滑肌细胞中的基因转染效率比不含抗DNA抗体的二元组合(DC)高4倍,比不含阳离子脂质体的二元组合(DA)约高11倍.激光共聚焦荧光显微观察证明,DAC细胞摄取量和DNA进入细胞核的量均明显高于对照组,而DC二元组合(不含抗DNA抗体)的DNA很少进入细胞核,细胞在DAC存在下生长正常.未发现细胞毒性.研究结果提示,DAC的作用机理主要是三元复合胶束中DNA的装载量比二元载体大得多,抗DNA抗体与阳离子脂质体的协同作用明显有利于DNA被细胞摄取和胞吞,从而提高了基因的转染和表达.  相似文献   

9.
载基因壳聚糖纳米粒的制备及免疫增强作用的初步研究   总被引:2,自引:0,他引:2  
摘 要 目的: 制备壳聚糖载基因纳米粒,并对其体外转染效率及其在小鼠体内的免疫增强效果进行初步研究。方法: 以本课题组构建的口蹄疫DNA疫苗为模型药物,采用复凝聚法制备纳米粒;用透射电镜观察形态;用纳米粒度分析仪测定粒径、多分散度和zeta电位;凝胶阻滞分析测定基因在纳米粒中的位置;用体外基因转染实验评价纳米粒的转染活性。用载基因壳聚糖纳米粒免疫雌性Balb/c小鼠,检测免疫小鼠的细胞免疫和体液免疫水平。结果: 所制备的载基因纳米粒形态规则、大多成球形,平均粒径约为150nm,多分散度<0.26,zeta电位约为21mV;凝胶分析结果表明质粒DNA与壳聚糖分子间可以通过电性结合作用而完全结合,基因几乎全部被包裹在纳米粒内部;体外基因转染实验表明壳聚糖作为一种新型的非病毒基因递送载体能够高效传递DNA进入BHK-21细胞,基因能够在该细胞中高效表达;小鼠免疫实验表明纳米粒不仅能诱导机体产生较高的细胞免疫水平,而且体液免疫水平也显著提高。结论: 壳聚糖纳米粒能将基因递送到细胞内并且能够表达,小鼠免疫实验显示其具有良好的免疫增强效果。  相似文献   

10.
无机纳米粒子作为基因载体的研究进展   总被引:2,自引:0,他引:2  
李新新  侯森  冯喜增 《生命科学》2008,20(3):402-407
转染是将具生物功能的核酸转移、运送到细胞内,并使其在细胞内维持生物功能的过程。作为现代生物化学和分子生物学中的一种主要技术手段,转染对于基因治疗有重要的意义。无机纳米粒子作为基因载体受到人们日益广泛的关注,其具有易于制备,可进行多样化的表面修饰等多种优势。本文将概述无机纳米粒子作为基因载体的现状及其对基因表达的影响。  相似文献   

11.
最近的研究发现:AcNPV的vp39基因与侵染密切相关[1].在侵染过程中,VP39蛋白与宿主的肌动蛋白结合,使其重排形成缆索(cable).导致细胞骨架发生变化有利于病毒编码的蛋白酶的水解.最后,子代病毒颗粒大量形成,宿主昆虫体全部液化成为脓水.可...  相似文献   

12.
Calfection: a novel gene transfer method for suspension cells   总被引:2,自引:0,他引:2  
We have developed a novel method called Calfection for gene delivery to and protein expression from suspension-cultivated mammalian cells. Plasmid DNA was simply diluted into a calcium chloride solution and then added to the cell culture for transfection. We evaluated and optimized this approach using suspension-adapted HEK293 cells grown in 12-well plates that were shaken on an orbital shaker. Highest expression levels were obtained when cells were transfected at a density of 5x10(5) cells/ml in the presence of 9 mM calcium and 5 microg/ml of plasmid DNA while maintaining a culture pH of 7.6 at the time of transfection. Suspension-adapted BHK 21 and CHO DG 44 cells could also be transfected using this method. Calfection differs from the widely known calcium phosphate coprecipitation technique. The physico-chemical composition of the DNA interacting complexes is not yet known. The transfection cocktail, DNA in a calcium chloride solution, remained highly efficient during long-term storage at temperatures ranging from room temperature to -80 degrees C. In contrast, calcium phosphate-DNA cocktails are only efficient for gene transfer when prepared fresh. Furthermore, passing the calcium-plasmid DNA mixture through a 0.2-microm filter did not compromise protein expression, whereas calcium phosphate-DNA coprecipitates were retained by the filter. High protein expression levels, a limited number of manipulations and the possibility to filter the cocktail make the Calfection approach suitable for both large-scale transfection in bioreactors and for high-throughput transfection experiments in microtiter plates.  相似文献   

13.
Mechanism of cell transfection with plasmid/chitosan complexes   总被引:26,自引:0,他引:26  
Chitosan is useful as a non-viral vector for gene delivery. Although there are several reports supporting the use of chitosan for gene delivery, studies regarding effects on transfection and the chitosan-specific transfection mechanism remain insufficient. In this report, the level of expression with plasmid/chitosan was observed to be no less than that with plasmid/lipofectin complexes in SOJ cells. The transfection mechanism of plasmid/chitosan complexes as well as the relationship between transfection activity and cell uptake was analyzed by using fluorescein isothiocyanate-labeled plasmid and Texas Red-labeled chitosan. In regard to effects on transfection, there were several factors to affect transfection activity and cell uptake, for example: the molecular mass of chitosan, stoichiometry of complex, as well as serum concentration and pH of transfection medium. The level of transfection with plasmid/chitosan complexes was found to be highest when the molecular mass of chitosan was 40 or 84 kDa, ratio of chitosan nitrogen to DNA phosphate (N/P ratio) was 5, and transfection medium contained 10% serum at pH 7.0. We also investigated the transfection mechanism, and found that plasmid/chitosan complexes most likely condense to form large aggregates (5-8 microm), which absorb to the cell surface. After this, plasmid/chitosan complexes are endocytosed, and possibly released from endosomes due to swelling of lysosomal in addition to swelling of plasmid/chitosan complex, causing the endosome to rupture. Finally, complexes were also observed to accumulate in the nucleus using a confocal laser scanning microscope.  相似文献   

14.
合成基序为LLLRRRDNEY*FY*VRRLL的短肽(pSP),其中含有两个可被JaK2蛋白激酶磷酸化的酪氨酸残基.将此短肽与壳聚糖(CS)相偶联,体外磷酸化及DNA释放实验检测哺乳动物细胞裂解液对短肽的磷酸化及pSP-CS/DNA复合物中DNA释放的影响.放射性标记DNA转移实验验证pSP-CS/DNA复合物的入胞能力后,将荷荧光素酶或GFP报告基因的质粒与pSP-CS制成pSP-CS/DNA复合物,转染体外培养的C2C12小鼠成肌细胞,观察GFP的分布及细胞裂解液中的荧光素酶活性以表征转染效率.继而进行多种细胞系的转染,衡量pSP偶联的壳聚糖对不同种属细胞的转染效率.结果表明,哺乳动物细胞裂解液可有效地使短肽发生磷酸化,并藉此促进DNA与壳聚糖载体的解离.以pSP修饰的壳聚糖进行转染时,细胞裂解液的荧光素酶活性可达普通壳聚糖转染的两倍,细胞中GFP的含量也明显增加.据此推论,短肽被磷酸化后产生电荷属性的改变,促进DNA与壳聚糖载体的解离从而显著提高壳聚糖的转染效率.  相似文献   

15.
Embryonal carcinoma (EC) cells are recognized as an excellent model system for studying the early stages of mammalian development. Many studies performed with EC cells involve transient transfection with promoter/reporter gene constructs and/or mammalian expression vectors. One of the limitations of working with EC cells is their inability to be transfected at high efficiency. In most cases, EC cells are transfected using the calcium phosphate method. The objective of this study was to identify protocols and culture conditions that significantly increase the transfection efficiency of EC cells. F9 EC cells were used for this purpose, because they are the EC cell line studied most commonly. We show that the transfection efficiency of F9 EC cells using the calcium phosphate method is less than 5%; whereas, their transfection efficiency can be improved approximately 15-fold using optimized culture conditions and liposome-based transfection reagents. Specifically, we demonstrate that more than 50% of F9 EC cells can be transfected using LipofectAMINE 2000. In addition to higher levels of transfection, there is much less plate-to-plate variation with liposome-based reagents as compared to transfection with calcium phosphate. Interestingly, transfection efficiency using these reagents was found to be inversely related to cell density. This contrasts sharply with the recommendation that transfection with LipofectAMINE 2000 or LipofectAMINE in conjunction with the PLUS reagent be performed at high cell densities. Given the improvements in transfection efficiency reported here, it will now be possible to perform studies with F9 EC cells that require transfection at significantly higher levels than that achieved using the calcium phosphate method. Overall, the highest transfection efficiencies were consistently obtained using LipofectAMINE 2000.  相似文献   

16.
Serum-free large-scale transient transfection of CHO cells   总被引:11,自引:0,他引:11  
To date, methods for large-scale transient gene expression (TGE) in cultivated mammalian cells have focused on two transfection vehicles: polyethylenimine (PEI) and calcium phosphate (CaPi). Both have been shown to result in high transfection efficiencies at scales beyond 10 L. Unfortunately, both approaches yield higher levels of recombinant protein (r-protein) in the presence of serum than in its absence. Since serum is a major cost factor and an obstacle to protein purification, our goal was to develop a large-scale TGE process for Chinese hamster ovary (CHO) cells in the absence of serum. CHO-DG44 cells were cultivated and transfected in a chemically defined medium using linear 25 kDa PEI as a transfection vehicle. Parameters that were optimized included the DNA amount, the DNA-to-PEI ratio, the timing and solution conditions for complex formation, the transfection medium, and the cell density at the time of transfection. The highest levels of r-protein expression were observed when cultures at a density of 2.0 x 10(6) cells/ml were transfected with 2.5 microg/ml DNA in RPMI 1640 medium containing 25 mM HEPES at pH 7.1. The transfection complex was formed at a DNA:PEI ratio of 1:2 (w/w) in 150 mM NaCl with a 10-min incubation at room temperature prior to addition to the culture. The procedure was scaled up for a 20-L bioreactor, yielding expression levels of 10  相似文献   

17.
Transient transfection of recombinant genes into cells is a commonly used approach for analyzing cell-cycle- and/or apoptotic-related activities of cell-cycle control proteins. In this approach, information regarding the functional consequence of expressing a recombinant protein transiently is garnered by comparing against results obtained from cells which are transfected with either a control expression plasmid and/or with mutant expression plasmids. In general however, little attention is paid to whether the transfection procedure itself influences these experiments. Using the calcium phosphate transfection method, we show that the introduction of DNA into cells induces signaling of the cell-cycle control machinery. In Hela cells, a transient increase in G0/G1 cells is observed 8 h after transfection. Furthermore, the introduction of DNA into several cell lines induces apoptosis. Transfection-mediated apoptosis can be elicited through a p53-independent mechanism, suggesting the possible extrapolation to many tumor cell lines. Last, we show that due to a likely cell-cycle-specific entry of marker genes into the nucleus, a highly biased cell-cycle distribution is observed in successfully transfected cells at early times following transfection. The importance of these issues in the interpretation as well as the design of transient transfection-based cell-cycle experiments is discussed.  相似文献   

18.
The polycation 1,5-dimethyl-1,5-diazaundecamethylene polymethobromide (polybrene) is superior to calcium phosphate for the introduction of purified DNA into cultured Aedes albopictus (mosquito) cells. Adsorption of the polybrene-DNA complex to mosquito cells was essentially linear for 6 h. However, the rate of adsorption of DNA increased when the DNA-polybrene mixture was preincubated for several hours prior to addition to cells. A recombinant plasmid carrying an inducible chloramphenicol acetyltransferase gene under the control of a Drosophila heat shock protein (hsp) promoter was used to show that expression of transfected DNA was highest when cells were treated with a freshly prepared polybrene-DNA mixture. Optimal expression was observed in cells transfected with 4-13 micrograms of DNA per 10(6) cells; transfection with 24 micrograms of DNA resulted in reduced CAT expression. Variation in the polybrene-DNA ratio improved transfection with high levels of DNA. In mosquito cells, CAT expression was independent of DNA methylation.  相似文献   

19.
The uptake and fate of purified SV40 (Simian virus 40) DNA, transfected into permissive CV-1 cells by calcium phosphate precipitates, was examined. By using a viral plaque assay, optimum conditions for transfection were established and transfection efficiencies of up to 10(6) plaque-forming units/micrograms of SV40 DNA were obtained. After a 2h exposure to 3H-labelled SV40 DNA-calcium phosphate co-precipitates under basal conditions, up to 7% of the input DNA became cell-associated, with approx. 4% reaching the nuclear fraction. This value was never exceeded, even under conditions known to enhance significantly the ultimate transfection efficiency, such as increased exposure time, addition of carrier DNA or treatment with DMSO (dimethyl sulphoxide) or glycerol. Substantial degradation of this SV40 DNA occurred within a further 4h, apparently in both nucleus and cytoplasm. Degradation of form-II and form-III SV40 DNA, which have lower transfection efficiencies than form-I DNA, was no more rapid than degradation of form-I DNA. The results indicate that less than 0.5% of the transfected DNA which reached the nucleus is protected from nuclease attack. The mechanism of action of agents such as glycerol, DMSO or carrier DNA remains obscure, but they may be involved in conferring greater stability to the intracellular SV40 DNA rather than merely affecting its rate of entry into the cell.  相似文献   

20.
BACKGROUND: Chitosan has been shown to be a non-toxic and efficient vector for in vitro gene transfection and in vivo gene delivery through pulmonary and oral administrations. Recently, we have shown that chitosan/DNA nanoparticles could mediate high levels of gene expression following intrabiliary infusion 1. In this study, we have examined the possibility of using polyethylene glycol (PEG)-grafted chitosan/DNA complexes to deliver genes to the liver through bile duct and portal vein infusions. METHODS: PEG (Mw: 5 kDa) was grafted onto chitosan (Mw: 47 kDa, deacetylation degree: 94%) with grafting degrees of 3.6% and 9.6% (molar percentage of chitosan monosaccharide units grafted with PEG). The stability of chitosan-g-PEG/DNA complexes was studied by measuring the change in particle size and by agarose gel electrophoresis against bile or serum challenge. The influence of PEG grafting on gene transfection efficiency was evaluated in HepG2 cells using luciferase reporter gene. Chitosan and chitosan-g-PEG/DNA complexes were delivered to the liver through bile duct and portal vein infusions with a syringe pump. Gene expression in the liver and the distribution of gene expression in other organs were evaluated. The acute liver toxicity of chitosan and chitosan-g-PEG/DNA complexes was examined by measuring serum alanine aminotranferase (ALT) and aspartate aminotransferase (AST) activities as a function of time. RESULTS: Both chitosan and chitosan-g-PEG displayed comparable gene transfection efficiency in HepG2 cells. After challenge with serum and bile, chitosan-g-PEG/DNA complexes, especially those prepared with chitosan-g-PEG (GD = 9.6%), did not form large aggregates like chitosan/DNA complexes but remained stable for up to 30 min. In addition, chitosan-g-PEG prevented the degradation of DNA in the presence of serum and bile. On day 3 after bile duct infusion, chitosan-g-PEG (GD = 9.6%)/DNA complexes mediated three times higher gene expression in the liver than chitosan/DNA complexes and yielded background levels of gene expression in other organs. On day 1 following portal vein infusion, gene expression level induced by chitosan/DNA complexes was hardly detectable but chitosan-g-PEG (GD = 9.6%) mediated significant transgene expression. Interestingly, transgene expression by chitosan-g-PEG/DNA complexes in other organs after portal vein infusion increased with increasing grafting degree of PEG. The ALT and AST assays indicated that grafting of PEG to chitosan reduced the acute liver toxicity towards the complexes. CONCLUSION: This study demonstrated the potential of chitosan-g-PEG as a safe and more stable gene carrier to the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号