首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 146 毫秒
1.
研究低分散度壳聚糖载黄芪多糖纳米粒(LCA)对糖尿病(DM)小鼠免疫功能的影响。注射链脲佐菌素与环磷酰胺混合试剂建立DM合并免疫力低下小鼠模型,酶法制备低分散度壳聚糖,离子交联法制备低分散度壳聚糖纳米粒,超声包埋黄芪多糖制备药物对昆明小鼠灌胃,每天1次,连续30 d。ELISA法检测小鼠血清Ig M、Ig G与INF-γ的含量,碳粒廓清法测定非特异性免疫功能,耳肿胀法检测迟发型变态反应,MTT法检测脾淋巴细胞增殖率以反映细胞免疫功能。结果显示灌胃350 mg/(kg·d)LCA显著提高血清Ig M、Ig G的分泌,显著降低INF-γ表达量,增强碳粒廓清率,提高小鼠迟发型变态反应(DTH),改善脾淋巴细胞增殖反应。适当剂量的低分散度壳聚糖载黄芪多糖纳米粒能提高DM小鼠体液免疫、非特异性免疫及细胞免疫功能,且效果优于纯黄芪多糖。  相似文献   

2.
目的:建立基于聚(乳酸-羟基乙酸)纳米粒(PLGA)载DNA的基因转染体系,比较用空白聚(乳酸-羟基乙酸)纳米粒(PLG-A-E)吸附质粒DNA和用分枝PEI修饰后的PLGA纳米粒(PLGA-BPEI)吸附质粒DNA优缺点。方法:用乳化蒸发法制备纳米粒,对纳米粒进行表征研究,包括包封率、Zeta电位、粒径大小、稳定性,用荧光显微镜观察它们对NIH3T3和HEK293细胞的转染效率,用MTT检测对它们细胞的毒性。结果:制备了两种基于PLGA的纳米粒,PLGA-E和PLGA-BPEI粒径大小为200-270nm,zeta电位为0-30mV,在血清和不同的pH值时两者均较稳定,转染效率PLGA-BPEI较PLGA-E高,且释放时间早,但前者较后者对细胞毒性大。结论:这两种基于PLGA纳米粒均能有效转染质粒DNA,它们存在不同的优缺点,应根据不同需要进行选择。  相似文献   

3.
目的:本研究旨在制备具有被动靶向和酸敏特性的脂质混合纳米粒,以期提高阿霉素(doxorubicin,DOX)的靶向递药效率,降低DOX的毒副作用,提高抗肿瘤活性。方法:采用微乳法制备磷酸钙纳米粒核,薄膜分散法制备脂质混合纳米粒,硫酸铵梯度法包封DOX。采用透射电镜观察外观形态,用zeta电位及纳米粒度分析仪测定纳米粒的粒径及zeta电位,透析法评价阿霉素脂质纳米粒体外释药特征。用MTT方法研究阿霉素脂质混合纳米粒对A549细胞的细胞毒性。采用流式细胞仪和激光共聚焦显微镜观察A549细胞对阿霉素脂质纳米粒的摄取。结果:体外释药结果显示阿霉素脂质纳米粒具有酸敏特性。流式结果说明A549细胞对阿霉素脂质纳米粒的摄取具有明显的时间依赖性,激光共聚焦显示阿霉素脂质纳米粒能将阿霉素递送至细胞核中。结论:阿霉素脂质体对A549细胞有明显的细胞毒性,为进一步进行体内实验提供了基础。  相似文献   

4.
两种阳离子纳米基因载体及植物基因介导效果的研究   总被引:4,自引:1,他引:3  
以阳离子聚乙烯亚胺(polyethylenimine, PEI)和壳聚糖(chitosan, CS)作为两种植物基因载体,分别制备了载基因PEI纳米粒(PEI/DNA)和壳聚糖-DNA纳米粒(CS/DNA),并对其形态、粒度分布、包封率、DNA结合的稳定性及纳米颗粒对DNA的保护等方面进行表征.并以GFP基因为报告基因进行植物细胞转染,比较两者转化效率.结果表明PEI/DNA纳米粒稳定性,对DNA的保护以及转染效率等方面均优于壳聚糖-DNA纳米粒.  相似文献   

5.
目的:硫酸长春新碱作为一种细胞毒型抗肿瘤药物,临床上多用其注射剂,虽应用广泛,但存在较多缺点,如药物半衰期短,代谢速率快以及毒副作用明显。本文目的是制备包载长春新碱和十二烷基磺酸钠的阳离子纳米结构脂质载体,并对其进行评价。方法:用复乳挥发法制备出目标脂质纳米粒;利用激光粒度仪对其粒径及zeta电位进行检测;利用高效液相色谱法对其包封率和载药量进行测定;透析法检测纳米粒的体外释放行为;用小肠吸收法评价纳米粒的促进吸收作用。结果:制得的纳米粒的平均粒径为(192.4±4.14)nm,多分散系数(PDI)为0.184±0.015,包封率为32.28%,Zeta电位为(30.6±4.09)m V,载药量为(1.56±0.10)%;体外释放实验显示在pH=7.4的中性释放介质中,硫酸长春新碱脂质纳米粒表现出缓释特性;小肠吸收实验表明十二烷基磺酸钠的加入和阳离子纳米粒的修饰可提高小肠对药物的吸收。结论:阳离子硫酸长春新碱纳米结构脂质载体具有缓释效果,并可以促进小肠对药物的吸收。  相似文献   

6.
目的:制备载羟基喜树碱(HCPT)的PLGA-hyd-PEG-FA纳米粒(HCPT@PLGA-hyd-PEG-FA),并对其体外抗肿瘤活性进行研究。方法:采用乳化溶剂挥发法制备HCPT@PLGA-hyd-PEG-FA,通过单因素试验考察超声功率、聚合物浓度、PVA浓度、水相和油相体积比及投药量对纳米粒粒径的影响;采用zeta电位及激光粒度分析仪测定纳米粒的粒径及zeta电位,用透射电镜(TEM)观察其形态;采用透析法评价HCPT@PLGA-hyd-PEG-FA的体外释药特性;采用MTT法测定HCPT@PLGA-hyd-PEG-FA对HepG2细胞的细胞毒性。结果:HCPT@PLGA-hyd-PEG-FA平均粒径约为109±3 nm,zeta电位为-11.57 mV,载药量为5.6%,TEM显示其为球形;体外释药结果表明HCPT@PLGA-hyd-PEG-FA对HCPT的释放具有p H值依赖性;HCPT和HCPT@PLGA-hyd-PEG-FA的IC50值分别为474.6 ng/mL和286.0 ng/mL。结论:HCPT@PLGA-hyd-PEG-FA体外释药性能良好,HCPT@PLGA-hyd-PEG-FA的细胞毒性明显大于游离的HCPT,值得进一步研究。  相似文献   

7.
目的:探讨叶酸-壳聚糖Prdx6 shRNA纳米粒对胃癌细胞生长的影响。方法:制备靶向性叶酸-壳聚糖Prdx6 shRNA纳米粒,原子力显微镜观察其形态,激光粒度分析仪测定纳米粒的粒径;倒置荧光显微镜观察叶酸-壳聚糖Prdx6 shRNA纳米粒的转染效率;采用蛋白质印迹法检测胃癌细胞Prdx6蛋白的表达变化;CCK8细胞增殖实验检测胃癌细胞的存活率。结果:1制备成功叶酸-壳聚糖Prdx6 shRNA向纳米粒。2荧光显微镜下观察靶向性叶酸-壳聚糖Prdx6 shRNA纳米粒转染胃癌细胞的效率明显高于非靶向纳米粒;胃癌细胞转染靶向组纳米粒后Prdx6蛋白的表达显著低于非靶向组。3与对照组相比,叶酸-壳聚糖Prdx6 shRNA纳米粒能够明显抑制胃癌细胞的增殖(P0.01)。结论:1叶酸-壳聚糖Prdx6 shRNA纳米粒可高效转染胃癌细胞。2转染叶酸-壳聚糖Prdx6 shRNA纳米粒后胃癌细胞的生长明显受抑制。  相似文献   

8.
目的:用壳聚糖(Chitosan,CS)和三聚磷酸钠(tripolyphosphate,TPP)交联制备包载青蒿琥酯纳米粒,并探讨其在体外对肿瘤细胞增殖的抑制作用。方法:以壳聚糖-三磷酸钠(CS/TPP)为基质并优化其比例,采用离子凝胶法制备包载青蒿琥酯(ART)纳米粒,对其进行表征包括粒径大小、Zeta电位、包封率、载药量和体外释放试验,以及红外光谱分析。用MTT法检测包栽青蒿琥酯的壳聚糖·三磷酸钠纳米粒对Hela、Caski、U251、MCF-7和HepG2细胞增殖的抑制作用。结果:成功构建青蒿琥酯一壳聚糖.三磷酸钠纳米颗粒(ARTnanoparticals,ART-NPs),平均粒径为166.8±0.2nnl,电位为10.2±0.79mV,红外光谱分析表明CS厂rPP成功连接并包裹ART,平均载药量和包封率分别为18%和74.82%;体外释放呈典型的双相分布,前24h呈暴发性释放(44.2%),其后缓慢释放,第9天累积释放度达67.4%。对不同肿瘤细胞的杀伤作用呈浓度和时间依赖趋势,且ART-NPs作用优于单-ART;相同浓度的ART-NPs在96h时对细胞增殖的抑制率明显高于ART组(P〈O.05)。结论:用壳聚糖和三磷酸钠交联可成功包载青蒿琥酯制成具有缓释性的纳米制剂,对肿瘤细胞的生长具有明显的抑制作用,有潜在的肿瘤治疗价值。  相似文献   

9.
目的:本研究旨在构建一种转铁蛋白修饰负载阿霉素(DOX)的磁纳米粒靶向递药系统,以提高阿霉素作用的靶向性。方法:采用化学共沉淀法制备转铁蛋白修饰负载阿霉素的磁性纳米粒(DOX@MNP),采用zeta电位及纳米粒度分析仪测定DOX@MNP的粒径及其zeta电位,透析法评价DOX@MNP的体外释药特征。通过MTT实验,研究DOX@MNP与游离DOX对A549细胞的细胞毒性,通过激光共聚焦显微镜和流式细胞仪观察A549细胞对DOX@MNP与游离DOX的摄取情况。结果:DOX@MNP的释药具有p H依赖性。MTT实验结果显示,DOX@MNP与游离DOX具有相当的细胞毒性;激光共聚焦显微镜和流式细胞仪检测结果显示A549细胞对DOX和DOX@MNP的摄取没有明显差异。结论:本文构建了一种转铁蛋白修饰包载阿霉素的磁纳米粒,体外结果显示其具有与游离DOX相当的细胞毒性,为进一步进行体内实验奠定了基础。  相似文献   

10.
新型纳米转染试剂转染PNP自杀基因体外杀伤实验   总被引:3,自引:0,他引:3  
将壳聚糖纳米粒包裹的报告基因pEGFP-N1质粒转染至HEK293细胞,并在HEK293细胞中成功表达荧光蛋白的基础上,进一步将本室自行构建的PNP基因的真核高效表达载体质粒pcDNA3-PNP转染至HEK293细胞。转染72h后,对转染的HEK293细胞给予前体药6-MPDR至终浓度40μg/ml,一天后,采用MTT比色法测定药物对细胞增值的影响,并进行统计学处理。实验结果表明采用壳聚糖纳米粒转染试剂转染并给予前体药6-MPDR的实验组活细胞数,与用壳聚糖转染但不给前体药6-MPDR的对照组活细胞数相比,有显著差异(P<0.05),说明新筛选出的壳聚糖纳米粒转染试剂可以将PNP自杀基因递送至靶细胞中,并在细胞中进行表达,从而使PNP/6-MPDR自杀基因系统发挥杀伤细胞的作用。分别采用相同工作浓度的脂质体与壳聚糖纳米粒转染试剂转染相同浓度的基因质粒,壳聚糖纳米粒对靶细胞生长数量影响很小,说明的壳聚糖纳米粒细胞毒性大大低于阳离子脂质体的细胞毒性。  相似文献   

11.
The gastrointestinal tract poses a variety of morphological and physiological barriers to the expression of target genes. The aim of this study was to evaluate the stability of cationic polymer/pDNA nanoparticles toward salts and enzymes of the intestinal fluid. Within this study, a chitosan-enzyme inhibitor conjugate has been generated and characterized. Based on this conjugate, nanoparticles with pDNA were generated to enhance transfection rate in oral gene delivery. The enzyme inhibitor aurintricarboxylic acid (ATA) was covalently bound to chitosan to improve the enzymatic stability of nanoparticles formed with this polymer and pDNA. Chitosan-ATA/pDNA nanoparticles showed a size of 98.5 +/- 26 nm and a zeta potential of -13.26 +/- 0.24 mV (n = 3-4). Stability studies with salt solution, lysozyme, DNase, and freshly collected porcine intestinal fluid showed that chitosan-ATA/pDNA nanoparticles are significantly (p < 0.05) more stable than unmodified chitosan/pDNA nanoparticles. Apart from improved stability, chitosan-ATA/pDNA nanoparticles showed a 2.6-fold higher transfection rate than chitosan/pDNA nanoparticles in the Caco-2 cell line, thus creating a promising carrier for orally administered therapeutic genes.  相似文献   

12.
Zheng F  Shi XW  Yang GF  Gong LL  Yuan HY  Cui YJ  Wang Y  Du YM  Li Y 《Life sciences》2007,80(4):388-396
This study was designed to investigate the in vitro and in vivo transfection efficiency of chitosan nanoparticles used as vectors for gene therapy. Three types of chitosan nanoparticles [quaternized chitosan -60% trimethylated chitosan oligomer (TMCO-60%), C(43-45 KDa, 87%), and C(230 KDa, 90%)] were used to encapsulate plasmid DNA (pDNA) encoding green fluorescent protein (GFP) using the complex coacervation technique. The morphology, optimal chitosan-pDNA binding ratio and conditions for maximal in vitro transfection were studied. The in vivo transfection was conducted by feeding the chitosan/pDNA nanoparticles to 12 BALB/C-nu/nu nude mice. Both conventional and TMCO-60% could form stable nanoparticles with pDNA. The in vitro study showed the transfection efficiency to be in the following descending order: TMCO-60%>C(43-45 KDa, 87%)>C(230 KDa, 90%). TMCO-60% proved to be the most efficient and the optimal chitosan/pDNA ratio being 3.2:1. In vivo study showed most prominent GPF expression in the gastric and upper intestinal mucosa. GFP expression in the mucosa of the stomach and duodenum, jejunum, ileum, and large intestine were found, respectively, in 100%, 88.9%, 77.8% and 66.7% of the nude mice examined. TMCO-60%/pDNA nanoparticles had better in vitro and in vivo transfection activity than the other two, and with minimal toxicity, which made it a desirable non-viral vector for gene therapy via oral administration.  相似文献   

13.
The development of safe and efficient gene carriers is the key to the clinical success of gene therapy. The present study was designed to develop and evaluate the chitosan-graft-polyethylenimine (CP)/DNA nanoparticles as novel non-viral gene vectors for gene therapy of osteoarthritis. The CP/DNA nanoparticles were produced through a complex coacervation of the cationic polymers with pEGFP after grafting chitosan (CS) with a low molecular weight (Mw) PEI (Mw = 1.8 kDa). Particle size and zeta potential were related to the weight ratio of CP:DNA, where decreases in nanoparticle size and increases in surface charge were observed as CP content increased. The buffering capacity of CP was significantly greater than that of CS. The transfection efficiency of CP/DNA nanoparticles was similar with that of the Lipofectamine™ 2000, and significantly higher than that of CS/DNA and PEI (25 kDa)/DNA nanoparticles. The transfection efficiency of the CP/DNA nanoparticles was dependent on the weight ratio of CP:DNA (w/w). The average cell viability after the treatment with CP/DNA nanoparticles was over 90% in both chondrocytes and synoviocytes, which was much higher than that of PEI (25 kDa)/DNA nanoparticles. The CP copolymers efficiently carried the pDNA inside chondrocytes and synoviocytes, and the pDNA was detected entering into nucleus. These results suggest that CP/DNA nanoparticles with improved transfection efficiency and low cytotoxicity might be a safe and efficient non-viral vector for gene delivery to both chondrocytes and synoviocytes.  相似文献   

14.
Chen J  Tian B  Yin X  Zhang Y  Hu D  Hu Z  Liu M  Pan Y  Zhao J  Li H  Hou C  Wang J  Zhang Y 《Journal of biotechnology》2007,130(2):107-113
The cationic polylactic acid (PLA) nanoparticle has emerged as a promising non-viral vector for gene delivery because of its biocompatibility and biodegradability. However, they are not capable of prolonging gene transfer and high transfection efficiency. In order to achieve prolonged delivery of cationic PLA/DNA complexes and higher transfection efficiency, in this study, we used copolymer methoxypolyethyleneglycol-PLA (MePEG-PLA), PLA and chitosan (CS) to prepare MePEG-PLA-CS NPs and PLA-CS NPs by a diafiltration method and prepared NPs/DNA complexes through the complex coacervation of nanoparticles with the pDNA. The object of our work is to evaluate the characterization and transfection efficiency of MePEG-PLA-CS versus PLA-CS NPs. The MePEG-PLA-CS NPs have a zeta potential of 15.7 mV at pH 7.4 and size under 100 nm, while the zeta potential of PLA-CS NPs was only 4.5 mV at pH 7.4. Electrophoretic analysis suggested that both MePEG-PLA-CS NPs and PLA-CS NPs with positive charges could protect the DNA from nuclease degradation and cell viability assay showed MePEG-PLA-CS NPs exhibit a low cytotoxicity to normal human liver cells. The potential of PLA-CS NPs and MePEG-PLA-CS NPs as a non-viral gene delivery vector to transfer exogenous gene in vitro and in vivo were examined. The pDNA being carried by MePEG-PLA-CS NPs, PLA-CS NPs and lipofectamine could enter and express in COS7 cells. However, the transfection efficiency of MePEG-PLA-CS/DNA complexes was better than PLA-CS/DNA and lipofectamine/DNA complexes by inversion fluorescence microscope and flow cytometry. It was distinctively to find that the transfection activity of PEGylation of complexes was improved. The nanoparticles were also tested for their ability to transport across the gastrointestinal mucosa in vivo in mice. In vivo experiments showed obviously that MePEG-PLA-CS/DNA complexes mediated higher gene expression in stomach and intestine of BALB/C mice compared to PLA-CS/DNA and lipofectamine/DNA complexes. These results suggested that MePEG-PLA-CS NPs have favorable properties for non-viral gene delivery.  相似文献   

15.
Chitosan is a biodegradable and biocompatible polymer and is useful as a non-viral vector for gene delivery. In order to deliver pDNA/chitosan complex into macrophages expressing a mannose receptor, mannose-modified chitosan (man-chitosan) was employed. The cellular uptake of pDNA/man-chitosan complexes through mannose recognition was then observed. The pDNA/man-chitosan complexes showed no significant cytotoxicity in mouse peritoneal macrophages, while pDNA/man-PEI complexes showed strong cytotoxicity. The pDNA/man-chitosan complexes showed much higher transfection efficiency than pDNA/chitosan complexes in mouse peritoneal macrophages. Observation with a confocal laser microscope suggested differences in the cellular uptake mechanism between pDNA/chitosan complexes and pDNA/man-chitosan complexes. Mannose receptor-mediated gene transfer thus enhances the transfection efficiency of pDNA/chitosan complexes.  相似文献   

16.
Intestinal trefoil factor (ITF) is a novel polypeptide with potential pharmacological value for the prevention and healing of tissue injury; however, poor production capacity limits its clinical application. Chitosan, as a non-viral vehicle, has been successfully used in gene delivery for its intrinsic characteristics. In this context, we prepared chitosan nanoparticles enwrapping ITF cDNA and investigated its size, zeta potential, stability, release profiles, loading efficiency and loading capacity. Gene transfer capability was assessed in HEK293 cells. The data revealed that the chitosan/DNA nanoparticles were successfully prepared with sizes less than 500 nm and positive zeta potentials. The nanoparticles could protect DNA from nuclease degradation, and release profiles of DNA were dependent on N/P ratios. In addition, transfection efficiency of chitosan/DNA nanoparticles was equivalent to Lipofectamine (TM). Collectively, the results suggest that chitosan/DNA nanoparticles could be a promising method for ITF gene therapy.  相似文献   

17.
Nonviral gene therapy has been a rapidly growing field. However, delivery systems that can provide protection for pDNA and potential targeting are still desired. A novel pDNA-nanoparticle delivery system was developed by entrapping hydrophobized pDNA inside nanoparticles engineered from oil-in-water (O/W) microemulsion precursors. Plasmid DNA was hydrophobized by complexing with cationic surfactants DOTAP and DDAB. Warm O/W microemulsions were prepared at 50-55 degrees C with emulsifying wax, Brij 78, Tween 20, and Tween 80. Nanoparticles were engineered by simply cooling the O/W microemulsions containing the hydrophobized pDNA in the oil phase to room temperature while stirring. The nanoparticles were characterized by particle sizing, zeta-potential, and TEM. Nanoparticles were challenged with serum nucleases to assess pDNA stability. In addition, the nanoparticles were coincubated with simulated biological media to assess their stability. In vitro hepatocyte transfection studies were completed with uncoated nanoparticles or nanoparticles coated with pullulan, a hepatocyte targeting ligand. In vivo biodistribution of the nanoparticles containing I-125 labeled pDNA was monitored 30 min after tail-vein injection to Balb/C mice. Depending on the hydrophobizing lipid agent employed, uniform pDNA-entrapped nanoparticles (100-160 nm in diameter) were engineered within minutes from warm O/W microemulsion precursors. The nanoparticles were negatively charged (-6 to -15 mV) and spherical. An anionic exchange column was used to separate unentrapped pDNA from nanoparticles. Gel permeation chromatography of pDNA-entrapped and serum-digested nanoparticles showed that the incorporation efficiency was approximately 30%. Free 'naked' pDNA was completely digested by serum nucleases while the entrapped pDNA remained intact. Moreover, in vitro transfection studies in Hep G2 cells showed that pullulan-coated nanoparticles resulted in enhanced luciferase expression, compared to both pDNA alone and uncoated nanoparticles. Preincubation of the cells with free pullulan inhibited the transfection. Finally, 30 min after tail vein injection to mice, only 16% of the 'naked' pDNA remained in the circulating blood compared to over 40% of the entrapped pDNA. Due to the apparent stability of these pDNA-entrapped nanoparticles in the blood, they may have potential for systemic gene therapy applications requiring cell and/or tissue-specific delivery.  相似文献   

18.
In this study the physicochemical and transfection properties of cationic hydroxyethylcellulose/plasmid DNA (pDNA) nanoparticles were investigated and compared with the properties of DNA nanoparticles based on polyethylene imine (PEI), which is widely investigated as a gene carrier. The two types of cationic hydroxyethylcelluloses studied, polyquaternium-4 (PQ-4) and polyquaternium-10 (PQ-10), are already commonly used in cosmetic and topical drug delivery devices. Both PQ-4 and PQ-10 spontaneously interact with pDNA with the formation of nanoparticles approximately 200 nm in size. Gel electrophoresis and fluorescence dequenching experiments indicated that the interactions between pDNA and the cationic celluloses were stronger than those between pDNA and PEI. The cationic cellulose/pDNA nanoparticles transfected cells to a much lesser extent than the PEI-based pDNA nanoparticles. The low transfection property of the PQ-4/pDNA nanoparticles was attributed to their neutrally charged surface, which does not allow an optimal binding of PQ-4/pDNA nanoparticles to cellular membranes. Although the PQ-10/pDNA nanoparticles were positively charged and thus expected to be taken up by cells, they were also much less efficient in transfecting cells than were PEI/pDNA nanoparticles. Agents known to enhance the endosomal escape were not able to improve the transfection properties of PQ-10/pDNA nanoparticles, indicating that a poor endosomal escape is, most likely, not the major reason for the low transfection activity of PQ-10/pDNA nanoparticles. We hypothesized that the strong binding of pDNA to PQ-10 prohibits the release of pDNA from PQ-10 once the PQ-10/pDNA nanoparticles arrive in the cytosol of the cells. Tailoring the nature and extent of the cationic side chains on this type of cationic hydroxyethylcellulose may be promising to further enhance their DNA delivery properties.  相似文献   

19.
Two new types of stable ternary complexes were formed by mixing chitosan with DOTAP/pDNA lipoplex and DOTAP with chitosan/pDNA polyplex via non-covalent conjugation for the efficient delivery of plasmid DNA. They were characterized by atomic force microscopy, gel retarding, and dynamic light scattering. The DOTAP/CTS/pDNA complexes were in compacted spheroids and irregular lump of larger aggregates in structure, while the short rod- and toroid-like and donut shapes were found in CTS/DOTAP/pDNA complexes. The transfection efficiency of the lipopolyplexes showed higher GFP gene expression than DOTAP/pDNA and CTS/pDNA controls in Hep-2 and Hela cells, and luciferase gene expression 2–3-fold than DOTAP/pDNA control and 70–120-fold than CTS/pDNA control in Hep-2 cells. The intracellular trafficking was examined by confocal laser scanning microscopy. Rapid pDNA delivery to the nucleus enchanced by chitosan was achieved after 4 h transfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号