首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome c (CC)-initiated Apaf-1 apoptosome formation represents a key initiating event in apoptosis. This process can be reconstituted in vitro with the addition of CC and ATP or dATP to cell lysates. How physiological levels of nucleotides, normally at high mM concentrations, affect apoptosome activation remains unclear. Here we show that physiological levels of nucleotides inhibit the CC-initiated apoptosome formation and caspase-9 activation by directly binding to CC on several key lysine residues and thus preventing CC interaction with Apaf-1. We show that in various apoptotic systems caspase activation is preceded or accompanied by decreases in overall intracellular NTP pools. Microinjection of nucleotides inhibits whereas experimentally reducing NTP pools enhances both CC and apoptotic stimuli-induced cell death. Our results thus suggest that the intracellular nucleotides represent critical prosurvival factors by functioning as natural inhibitors of apoptosome formation and a barrier that cells must overcome the nucleotide barrier to undergo apoptosis cell death.  相似文献   

2.
We report here the biochemical analysis of the reconstituted de novo procaspase-9 activation using highly purified cytochrome c, recombinant apoptotic protease-activating factor-1 (Apaf-1), and recombinant procaspase-9. Using a nucleotide binding assay, we found that Apaf-1 alone bound dATP poorly and the nucleotide binding to Apaf-1 was significantly stimulated by cytochrome c. The binding of dATP to Apaf-1 induces the formation of a multimeric Apaf-1. cytochrome c complex, apoptosome. Procaspase-9 also synergistically promotes dATP binding to Apaf-1 in a cytochrome c-dependent manner. The dATP bound to apoptosome remained as dATP, not dADP. A nonhydrolyzable ATP analog, ADPCP (beta,gamma-methylene adenosine 5'-triphosphate), was able to support apoptosome formation and caspase activation in place of dATP or ATP. These data indicate that the key event in Apaf-1-mediated caspase-9 activation is cytochrome c-induced dATP binding to Apaf-1.  相似文献   

3.
4.
The caspase recruitment domain (CARD) is present in a large number of proteins. Initially, the CARD was recognized as part of the caspase activation machinery. CARD-CARD interactions play a role in apoptosis and are responsible for the Apaf-1-mediated activation of procaspase-9 in the apoptosome. CARD-containing proteins mediate the inflammasome-dependent activation of proinflammatory caspase-1. More recently, new roles for CARD-containing proteins have been reported in signaling pathways associated with immune responses. The functional role of CARD-containing proteins and CARDs in coordinating apoptosis and inflammatory and immune responses is not completely understood. We have explored the putative cross-talk between apoptosis and inflammation by analyzing the modulatory activity on both the Apaf-1/procaspase-9 interaction and the inflammasome-mediated procaspase-1 activation of CARD-derived polypeptides. To this end, we analyzed the activity of individual recombinant CARDs, rationally designed CARD-derived peptides, and peptides derived from phage display.  相似文献   

5.
The cellular-stress response can mediate cellular protection through expression of heat-shock protein (Hsp) 70, which can interfere with the process of apoptotic cell death. Stress-induced apoptosis proceeds through a defined biochemical process that involves cytochrome c, Apaf-1 and caspase proteases. Here we show, using a cell-free system, that Hsp70 prevents cytochrome c/dATP-mediated caspase activation, but allows the formation of Apaf-1 oligomers. Hsp70 binds to Apaf-1 but not to procaspase-9, and prevents recruitment of caspases to the apoptosome complex. Hsp70 therefore suppresses apoptosis by directly associating with Apaf-1 and blocking the assembly of a functional apoptosome.  相似文献   

6.
The release of cytochrome c from mitochondria results in the formation of an Apaf-1-caspase-9 apoptosome and induces the apoptotic protease cascade by activation of procaspase-3. The present studies demonstrate that heat shock protein 90 (Hsp90) forms a cytosolic complex with Apaf-1 and thereby inhibits the formation of the active complex. Immunodepletion of Hsp90 depletes Apaf-1 and thereby inhibits cytochrome c-mediated activation of caspase-9. Addition of purified Apaf-1 to Hsp90-depleted cytosolic extracts restores cytochrome c-mediated activation of procaspase-9. We also show that Hsp90 inhibits cytochrome c-mediated oligomerization of Apaf-1 and thereby activation of procaspase-9. Furthermore, treatment of cells with diverse DNA-damaging agents dissociates the Hsp90-Apaf-1 complex and relieves the inhibition of procaspase-9 activation. These findings provide the first evidence for a negative cytosolic regulator of cytochrome c-dependent apoptosis and for involvement of a chaperone in the caspase cascade.  相似文献   

7.
The cytosolic adaptor protein Apaf-1 is a key player in the intrinsic pathway of apoptosis. Binding of mitochondrially released cytochrome c and of dATP or ATP to Apaf-1 induces the formation of the heptameric apoptosome complex, which in turn activates procaspase-9. We have re-investigated the chain of events leading from monomeric autoinhibited Apaf-1 to the functional apoptosome in vitro. We demonstrate that Apaf-1 does not require energy from nucleotide hydrolysis to eventually form the apoptosome. Despite a low intrinsic hydrolytic activity of the autoinhibited Apaf-1 monomer, nucleotide hydrolysis does not occur at any stage of the process. Rather, mere binding of ATP in concert with the binding of cytochrome c primes Apaf-1 for assembly. Contradicting the current view, there is no strict requirement for an adenine base in the nucleotide. On the basis of our results, we present a new model for the mechanism of apoptosome assembly.  相似文献   

8.
The apoptosome is an Apaf-1 cytochrome c complex that activates procaspase-9. The three-dimensional structure of the apoptosome has been determined at 27 A resolution, to reveal a wheel-like particle with 7-fold symmetry. Molecular modeling was used to identify the caspase recruitment and WD40 domains within the apoptosome and to infer likely positions of the CED4 homology motif and cytochrome c. This analysis suggests a plausible role for cytochrome c in apoptosome assembly. In a subsequent structure, a noncleavable mutant of procaspase-9 was localized to the central region of the apoptosome. This complex promotes the efficient activation of procaspase-3. Therefore, the cleavage of procaspase-9 is not required to form an active cell death complex.  相似文献   

9.
Activation of procaspase-9 on the apoptosome is a pivotal step in the intrinsic cell death pathway. We now provide further evidence that caspase recruitment domains of pc-9 and Apaf-1 form a CARD-CARD disk that is flexibly tethered to the apoptosome. In addition, a 3D reconstruction of the pc-9 apoptosome was calculated without symmetry restraints. In this structure, p20 and p10 catalytic domains of a single pc-9 interact with nucleotide binding domains of adjacent Apaf-1 subunits. Together, disk assembly and pc-9 binding create an asymmetric proteolysis machine. We also show that CARD-p20 and p20-p10 linkers play important roles in pc-9 activation. Based on the data, we propose a proximity-induced association model for pc-9 activation on the apoptosome. We also show that pc-9 and caspase-3 have overlapping binding sites on the central hub. These binding sites may play a role in pc-3 activation and could allow the formation of hybrid apoptosomes with pc-9 and caspase-3 proteolytic activities.  相似文献   

10.
Katoh I  Sato S  Fukunishi N  Yoshida H  Imai T  Kurata S 《Cell research》2008,18(12):1210-1219
To explore how the intrinsic apoptosis pathway is controlled in the spontaneous fog (forebrain overgrowth) mutant mice with an Apaf1 splicing deficiency, we examined spleen and bone marrow cells from Apaf1(+/+) (+/+) and Apaf1(fog/fog) (fog/fog) mice for initiator caspase-9 activation by cellular stresses. When the mitochondrial inner membrane potential (Deltapsim) was disrupted by staurosporine, +/+ cells but not fog/fog cells activated caspase-9 to cause apoptosis, indicating the lack of apoptosome (apoptosis protease activating factor 1 (Apaf-1)/cytochrome c/(d)ATP/procaspase-9) function in fog/fog cells. However, when a marginal ( approximately 20%) decrease in Deltapsim was caused by hydrogen peroxide (0.1 mM), peroxynitritedonor 3-morpholinosydnonimine (0.1 mM) and UV-C irradiation (20 J/m(2)), both +/+ and fog/fog cells triggered procaspase-9 auto-processing and its downstream cascade activation. Supporting our previous results, procaspase-9 pre-existing in the mitochondria induced its auto-processing before the cytosolic caspase activation regardless of the genotypes. Cellular ATP concentration significantly decreased under the hypoactive Deltapsim condition. Furthermore, we detected accumulation of citrate, a kosmotrope known to facilitate procaspase-9 dimerization, probably due to a feedback control of the Krebs cycle by the electron transfer system. Thus, mitochondrial in situ caspase-9 activation may be caused by the major metabolic reactions in response to physiological stresses, which may represent a mode of Apaf-1-independent apoptosis hypothesized from recent genetic studies.  相似文献   

11.
由细胞色素C(Cytochrome c,Cyt c)、ATP/dATP、凋亡酶激活因子-1(apoptotic protease activating factor-1,Apaf-1)以及procaspase-9(caspase-9的前体)构成的约700 kDa、具有很强的caspase酶激活活性的大分子蛋白复合物——凋亡体(apoptosome),在哺乳动物线粒体凋亡途径和胚胎发育中至关重要。描述了凋亡体上各因子的结构、功能及其相互关系,线粒体介导的凋亡通路中凋亡体的形成及其调控。  相似文献   

12.
Bao Q  Lu W  Rabinowitz JD  Shi Y 《Molecular cell》2007,25(2):181-192
Apaf-1 plays an essential role in apoptosis. In the presence of cytochrome c and dATP, Apaf-1 assembles into an oligomeric apoptosome, which is responsible for the activation of procaspase-9 and the maintenance of the enzymatic activity of the processed caspase-9. Regulation of apoptosome assembly by other cellular factors is poorly understood. Here we report that physiological concentrations of calcium ion negatively affect the assembly of apoptosome by inhibiting nucleotide exchange in the monomeric, autoinhibited Apaf-1 protein. Consequently, calcium blocks the ability of Apaf-1 to activate caspase-9. These observations suggest an important role of calcium homeostasis on the Apaf-1-dependent apoptotic pathway.  相似文献   

13.
Generation of reactive oxygen species (ROS) and activation of caspase cascade are both indispensable in Fas-mediated apoptotic signaling. Although ROS was presumed to affect the activity of the caspase cascade on the basis of findings that antioxidants inhibited the activation of caspases and that the stimulation of ROS by itself activated caspases, the mechanism by which these cellular events are integrated in Fas signaling is presently unclear. In this study, using human T cell leukemia Jurkat cells as well as an in vitro reconstitution system, we demonstrate that ROS are required for the formation of apoptosome. We first showed that ROS derived from mitochondrial permeability transition positively regulated the apoptotic events downstream of mitochondrial permeability transition. Then, we revealed that apoptosome formation in Fas-stimulated Jurkat cells was clearly inhibited by N-acetyl-L-cysteine and manganese superoxide dismutase by using both the immunoprecipitation and size-exclusion chromatography methods. To confirm these in vivo findings, we next used an in vitro reconstitution system in which in vitro-translated apoptotic protease-activating factor 1 (Apaf-1), procaspase-9, and cytochrome c purified from human placenta were activated by dATP to form apoptosome; the formation of apoptosome was markedly inhibited by reducing reagents such as DTT or reduced glutathione (GSH), whereas hydrogen peroxide prevented this inhibition. We also found that apoptosome formation was substantially impaired by GSH-pretreated Apaf-1, but not GSH-pretreated procaspase-9 or GSH-pretreated cytochrome c. Collectively, these results suggest that ROS plays an essential role in apoptosome formation by oxidizing Apaf-1 and the subsequent activation of caspase-9 and -3.  相似文献   

14.
Adenine deoxynucleosides, such as 2-chlorodeoxyadenosine (2CdA) and fludarabine, induce apoptosis in quiescent lymphocytes, and are thus useful drugs for the treatment of indolent lymphoproliferative diseases. We previously demonstrated that that the 5'-triphosphate metabolite of 2CdA (2CdATP), similar to dATP, can cooperate with cytochrome c and apoptosis protein-activating factor-1 (APAF-1) to trigger a caspase pathway in a HeLa cell-free system. We used a fluorometry-based assay of caspase activation to extend the analysis to several other clinically relevant adenine deoxynucleotides in B-chronic lymphocytic leukemia extracts. The nucleotide-induced caspase activation displayed typical Michaelis-Menten kinetics. As estimated by the V(max)/K(m) ratios, the relative efficiencies of different nucleotides were Ara-ATP > 9-fluoro-9-beta-D-arabinofuranosyladenine 5'-triphosphate > dATP > 2CdATP > 9-beta-D-arabinofuranosylguanine 5'-triphosphate > dADP > ATP. In contrast to dADP, both ADP and its nonhydrolyzable alpha, beta-methylphosphonate analog were strong inhibitors of APAF-1-dependent caspase activation. The hierarchy of nucleotide activation was confirmed in a fully reconstituted system using recombinant APAF-1 and recombinant procaspase-9. These results suggest that the potency of adenine deoxynucleotides as co-factors for APAF-1-dependent caspase activation is due both to stimulation by the 5'-triphosphates and lack of inhibition by the 5'-diphosphates. The capacity of adenine deoxynucleoside metabolites to activate the apoptosome pathway may be an additional biochemical mechanism that plays a role in the chemotherapy of indolent lymphoproliferative diseases.  相似文献   

15.
Apoptosis is a biological process relevant to human disease states that is strongly regulated through protein-protein complex formation. These complexes represent interesting points of chemical intervention for the development of molecules that could modulate cellular apoptosis. The apoptosome is a holoenzyme multiprotein complex formed by cytochrome c-activated Apaf-1 (apoptotic protease-activating factor), dATP and procaspase-9 that link mitochondria disfunction with activation of the effector caspases and in turn is of interest for the development of apoptotic modulators. In the present study we describe the identification of compounds that inhibit the apoptosome-mediated activation of procaspase-9 from the screening of a diversity-oriented chemical library. The active compounds rescued from the library were chemically optimised to obtain molecules that bind to both recombinant and human endogenous Apaf-1 in a cytochrome c-noncompetitive mechanism that inhibits the recruitment of procaspase-9 by the apoptosome. These newly identified Apaf-1 ligands decrease the apoptotic phenotype in mitochondrial-mediated models of cellular apoptosis.  相似文献   

16.
Kim HE  Jiang X  Du F  Wang X 《Molecular cell》2008,30(2):239-247
During apoptosis, cytochrome c is released from mitochondria to the cytosol, where it binds Apaf-1. The Apaf-1/cytochrome c complex then oligomerizes either into heptameric caspase-9-activating apoptosome, which subsequently activates caspase-3 and caspase-7, or bigger inactive aggregates, depending on the availability of nucleotide dATP/ATP. A tumor suppressor protein, PHAPI, enhances caspase-9 activation by promoting apoptosome formation through an unknown mechanism. We report here the identification of cellular apoptosis susceptibility protein (CAS) and heat shock protein 70 (Hsp70) as mediators of PHAPI activity. PHAPI, CAS, and Hsp70 function together to accelerate nucleotide exchange on Apaf-1 and prevent inactive Apaf-1/cytochrome c aggregation. CAS expression is induced by multiple apoptotic stimuli including UV irradiation. Knockdown of CAS by RNA interference (RNAi) in cells attenuates apoptosis induced by UV light and causes endogenous Apaf-1 to form aggregates. These studies indicated that PHAPI, CAS, and Hsp70 play an important regulatory role during apoptosis.  相似文献   

17.
Regulation of the Apaf-1/caspase-9 apoptosome by caspase-3 and XIAP   总被引:8,自引:0,他引:8  
The apoptosome is a multiprotein complex comprising Apaf-1, cytochrome c, and caspase-9 that functions to activate caspase-3 downstream of mitochondria in response to apoptotic signals. Binding of cytochrome c and dATP to Apaf-1 in the cytosol leads to the assembly of a heptameric complex in which each Apaf-1 subunit is bound noncovalently to a procaspase-9 subunit via their respective CARD domains. Assembly of the apoptosome results in the proteolytic cleavage of procaspase-9 at the cleavage site PEPD(315) to yield the large (p35) and small (p12) caspase-9 subunits. In addition to the PEPD site, caspase-9 contains a caspase-3 cleavage site (DQLD(330)), which when cleaved, produces a smaller p10 subunit in which the NH(2)-terminal 15 amino acids of p12, including the XIAP BIR3 binding motif, are removed. Using purified proteins in a reconstituted reaction in vitro, we have assessed the relative impact of Asp(315) and Asp(330) cleavage on caspase-9 activity within the apoptosome. In addition, we characterized the effect of caspase-3 feedback cleavage of caspase-9 on the rate of caspase-3 activation, and the potential ramifications of Asp(330) cleavage on XIAP-mediated inhibition of the apoptosome. We have found that cleavage of procaspase-9 at Asp(330) to generate p35, p10 or p37, p10 forms resulted in a significant increase (up to 8-fold) in apoptosome activity compared with p35/p12. The significance of this increase was demonstrated by the near complete loss of apoptosome-mediated caspase-3 activity when a point mutant (D330A) of procaspase-9 was substituted for wild-type procaspase-9 in the apoptosome. In addition, cleavage at Asp(330) exposed a novel p10 NH(2)-terminal peptide motif (AISS) that retained the ability to mediate XIAP inhibition of caspase-9. Thus, whereas feedback cleavage of caspase-9 by caspase-3 significantly increases the activity of the apoptosome, it does little to attenuate its sensitivity to inhibition by XIAP.  相似文献   

18.
Apaf-1 and cytochrome c coassemble in the presence of dATP to form the apoptosome. We have determined a structure of the apoptosome at 12.8 A resolution by using electron cryomicroscopy and single-particle methods. We then docked appropriate crystal structures into the map to create an accurate domain model. Thus, we found that seven caspase recruitment domains (CARDs) form a central ring within the apoptosome. At a larger radius, seven copies of the nucleotide binding and oligomerization domain (NOD) associate laterally to form the hub, which encircles the CARD ring. Finally, an arm-like helical domain (HD2) links each NOD to a pair of beta propellers, which bind a single cytochrome c. This model provides insights into the roles of dATP and cytochrome c in assembly. Our structure also reveals how a CARD ring and the central hub combine to create a platform for procaspase-9 activation.  相似文献   

19.
MCF-7 cells lack caspase-3 but undergo mitochondrial-dependent apoptosis via caspase-7 activation. It is assumed that the Apaf-1-caspase-9 apoptosome processes caspase-7 in an analogous manner to that described for caspase-3. However, this has not been validated experimentally, and we have now characterized the caspase-7 activating apoptosome complex in MCF-7 cell lysates activated with dATP/cytochrome c. Apaf-1 oligomerizes to produce approximately 1.4-MDa and approximately 700-kDa apoptosome complexes, and the latter complex directly cleaves/activates procaspase-7. This approximately 700-kDa apoptosome complex, which is also formed in apoptotic MCF-7 cells, is assembled by rapid oligomerization of Apaf-1 and followed by a slower process of procaspase-9 recruitment and cleavage to form the p35/34 forms. However, procaspase-9 recruitment and processing are accelerated in lysates supplemented with caspase-3. In lysates containing very low levels of Smac and Omi/HtrA2, XIAP (X-linked inhibitor of apoptosis) binds tightly to caspase-9 in the apoptosome complex, and as a result caspase-7 processing is abrogated. In contrast, in MCF-7 lysates containing Smac and Omi/HtrA2, active caspase-7 is released from the apoptosome and forms a stable approximately 200-kDa XIAP-caspase-7 complex, which apparently does not contain cIAP1 or cIAP2. Thus, in comparison to caspase-3-containing cells, XIAP appears to have a more significant antiapoptotic role in MCF-7 cells because it directly inhibits caspase-7 activation by the apoptosome and also forms a stable approximately 200-kDa complex with active caspase-7.  相似文献   

20.
Cytochrome c and dATP/ATP induce oligomerization of Apaf-1 into two distinct apoptosome complexes: an approximately 700 kDa complex, which recruits and activates caspases-9, -3 and -7, and an approximately 1.4 MDa complex, which recruits and processes caspase-9, but does not efficiently activate effector caspases. While searching for potential inhibitors of the approximately 1.4 MDa apoptosome complex, we observed an approximately 30 kDa Apaf-1 immunoreactive fragment that was associated exclusively with the inactive complex. We subsequently determined that caspase-3 cleaved Apaf-1 within its CED-4 domain (SVTD(271) downward arrowS) in both dATP-activated lysates and apoptotic cells to form a prominent approximately 30 kDa (p30) N-terminal fragment. Purified recombinant Apaf-1 p30 fragment weakly inhibited dATP-dependent activation of caspase-3 in vitro. However, more importantly, prevention of endogenous formation of the p30 fragment did not stimulate latent effector caspase processing activity in the large complex. Similarly, the possibility that XIAP, an inhibitor of apoptosis protein (IAP), was responsible for the inactivity of the approximately 1.4 MDa complex was excluded as immunodepletion of this caspase inhibitor failed to relieve the inhibition. However, selective proteolytic digestion of the approximately 1.4 MDa and approximately 700 kDa complexes showed that Apaf-1 was present in conformationally distinct forms in these two complexes. Therefore, the inability of the approximately 1.4 MDa apoptosome complex to process effector caspases most likely results from inappropriately folded or oligomerized Apaf-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号