首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Microbial protein was produced from defatted rice polishings using Candida utilis in shake-flasks and a 14-l fermentor to optimize fermentation conditions before producing biomass in a 50-l fermentor. The organism supported maximum values of 0.224 h−1, 0.94, 1.35, 1.75, 2.12 g l−1 h−1, 0.62 g cells g−1 substrate utilized and 0.38 g g−1 for specific growth rate, true protein productivity, crude protein productivity, cell mass productivity, substrate consumption rate, cell yield, crude protein yield, respectively in 50-l fermentor studies using optimized cultural conditions. Maximum values compared favourably or were superior to published data in literature. The biomass protein in the 50-l fermentor contained 22.3, 27.8, 19.2, 9.5, 38.12, 8.5 and 0.27% true protein, crude protein, crude fibre, ash, carbon, cellulose and RNA content, respectively. The dried biomass showed a gross metabolizable energy value of 2678 kcal kg−1 and contained all essential and non-essential amino acids. Yeast biomass as animal feed may replace expensive feed ingredients currently being used in poultry feed and may improve the economics of feed produced in countries like Pakistan. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The aim of this work was to develop an economical bioprocess to produce the bio-ethanol from soybean molasses at laboratory, pilot and industrial scales. A strain of Saccharomyces cerevisiae (LPB-SC) was selected and fermentation conditions were defined at the laboratory scale, which included the medium with soluble solids concentration of 30% (w/v), without pH adjustment or supplementation with the mineral sources. The kinetic parameters - ethanol productivity of 8.08g/Lh, Y(P/S) 45.4%, Y(X/S) 0.815%, m 0.27h(-1) and mu(X) 0.0189h(-1) - were determined in a bench scale bioreactor. Ethanol production yields after the scale-up were satisfactory, with small decreases from 169.8L at the laboratory scale to 163.6 and 162.7L of absolute ethanol per ton of dry molasses, obtained at pilot and industrial scales, respectively.  相似文献   

3.
Fed-batch cultures of Hansenula polymorpha were studied to develop an efficient biosystem to produce recombinant human serum albumin (HSA). To comply with this purpose, we used high purity oxygen supplying strategy to increase viable cell density in a bioreactor and enhance the production of target protein. A mutant strain, H. polymorpha GOT7 was utilized in this study as a host strain in both 5-L and 30-L scale fermentors. To supply high purity oxygen into a bioreactor, nearly 100 % high purity oxygen from commercial bomb or higher than 93 % oxygen available in-situ from a pressure swing adsorption oxygen generator (PSA) was employed. Under the optimal fermentation of H. polymorpha with high purity oxygen, the final cell densities and produced HSA concentrations were 24.6 g/L and 5.1 g/L in the 5-L fermentor, and 24.8 g/L and 4.5 g/L in the 30-L fermentor, respectively. These were about 2-10 times higher than those obtained in air-based fed-batch fermentations. The discrepancies between the 5-L and 30-L fermentors with air supply were presumably due to the higher contribution of surface aeration over submerged aeration in the 5-L fermentor. This study, therefore, proved the positive effect of high purity oxygen to enhance viable cell density as well as target recombinant protein production in microbial fermentations.  相似文献   

4.
以玉米秸秆为原料,以麸皮和异Vc钠生产废液(WEP)为辅料进行生物蛋白饲料固态发酵研究.通过菌种配伍试验,确定了混菌发酵菌种为白地霉、产朊假丝酵母和枯草芽孢杆菌.在此基础上通过单因素优化试验确定了秸秆蛋白饲料的最优发酵条件:以玉米秸秆(5 g)和麸皮(1 g)为基料,4%WEP营养液,固液比1:4(g/mL),初始pH值4.5;以麸皮浸汁作种子培养液,种龄24 h,各菌接种比例为产朊假丝酵母∶白地霉∶枯草芽孢杆菌=3:1:1,接种量2 mL;28℃、静置发酵2 d,在此条件下,秸秆饲料中真蛋白含量为6.21%,比对照提高了23.95%.该研究为秸秆和异Vc钠生产废液的高质化利用提供了新的思路和途径.  相似文献   

5.
The aim of this study was to investigate protein requirements for the maintenance and growth of blue-breasted quail (Excalfactoria chinensis) from 7 to 21 days of age. A total of 180 quails, 7 days old, were randomly assigned to 36 cages and for 2 weeks were fed diets with a metabolisable energy concentration of 12.13 MJ/kg and a dietary CP concentration of 125, 150, 175, 200, 225 or 250 g/kg. The average BW per cage and the feed intake per cage were recorded daily. The results showed that quails fed 125 g/kg CP could not maintain their BW and had negative feed efficiency. There were linear and quadratic relationships between CP level and response criteria, including BW, weight gain, feed intake, feed efficiency, final body nitrogen mass and body nitrogen accretion (P<0.05). The dietary CP requirements, as calculated using a one-slope quadratic broken-line model, were 211 and 202 g/kg according to weight gain and feed efficiency, respectively. The regression equations, on the basis of metabolic BW, of daily weight gain on daily protein intake according to the model were Y=0.137-2.128(0.113-X) if X<0.113 and Y=0.137 if X>or=0.113 (R2=0.96, P<0.001), which meant that the protein requirement for maintenance was 0.049 times the metabolic BW and that to gain 1 g weight quails needed to ingest an extra 0.47 g protein after the maintenance requirement was satisfied. The regression equations, on the basis of metabolic BW, of daily body nitrogen accretion on daily protein intake according to the model were Y=5.667-76.700(0.119-X) if X<0.119 and Y=5.667 if X>or=0.119 (R2=0.95, P<0.001), which meant that quails had to receive an amount of protein equal to their metabolic BW multiplied by 0.045 to satisfy the requirement for maintenance and then ingest an extra 13 g protein to accrete 1 g body nitrogen. In conclusion, growth or protein accretion rates should be regulated according to dietary CP for specific experimental purposes via apportioning protein requirements for maintenance v. growth.  相似文献   

6.
7.
Human tumor necrosis factor (TNF) alpha/cachectin was expressed in the methylotrophic yeast Pichia pastoris at high levels (greater than 30% of the soluble protein) by placing the TNF cDNA under the control of regulatory sequences derived from the alcohol oxidase gene. Batch fermentor cultures at cell densities of 50 and 85 g dry cell weight/L contained approximately 6 X 10(10) and 10(11) units/L TNF bioactivity (6 and 10 g/L TNF), respectively. TNF productivity of 0.108 g L-1 h-1 was obtained in the continuous mode on glycerol- and methanol-mixed feed at 25 g dry cell weight/L cell density. TNF contained in the yeast cell lysate was soluble, displayed full cytotoxic activity, and was recognized by antibodies prepared against TNF derived from Escherichia coli. TNF was purified to greater than 95% purity with greater than 75% recovery by using three sequential chromatographic steps with a coordinated effluent-affluent buffer scheme which allowed one eluate to also serve as the loading buffer for the succeeding column. The amino acid composition, NH2-terminal amino acid sequence, isoelectric point, and minimal molecular weight determined for TNF corroborated those properties predicted from the nucleotide sequence. Sedimentation data indicated that TNF in the native form is a compact trimer held by noncovalent interactions. Circular dichroic spectra of TNF resemble those of proteins with high beta structure. TNF exhibited cachectic activity on mouse 3T3-L1 cells at about the same equivalence as the cytotoxic activity toward mouse L929 cells. In the criteria examined, TNF derived from P. pastoris closely resembles TNF derived from recombinant E. coli and human HL-60 cells.  相似文献   

8.
The effect of certain simple and cost-effective processing methods on the nutritional and anti-nutritional properties of seed materials of an under-utilized food legume, Mucuna pruriens (L.) DC. var. utilis (Wall. ex Wight) Baker ex Burck (velvet bean, VB), collected from Valanadu, Kerala, India was analyzed in experiment 1. The raw VB seeds were found to contain appreciable levels of crude protein (263.2 g/kg dry matter (DM)); ether extract (79.6 g/kg DM); crude fiber (95.8 g/kg DM) and ash content (38.4 g/kg DM). Among the different treatments used, soaking in sodium bicarbonate solution + autoclaving was more effective in reducing maximum levels of various anti-nutritional compounds of VB seeds. Furthermore, in experiment 2, the effect of inclusion of different levels of velvet bean meal (VBM; subjected to soaking in sodium bicarbonate solution + autoclaving) as an alternative protein source in poultry feed on the growth performance of commercial-type broiler birds was investigated. The results indicate that the inclusion of VBM up to the 40% level exhibited better growth performance of the broiler birds such as feed intake, body weight gain, feed conversion ratio and protein efficiency ratio in both the starter and finisher phases.  相似文献   

9.
Molecular characterization of phenylketonuria in Japanese patients   总被引:15,自引:0,他引:15  
We characterized phenylalanine hydroxylase (PAH) genotypes of Japanese patients with phenylketonuria (PKU) and hyperphenylalaninemia (HPA). PKU and HPA mutations in 41 Japanese patients were identified by denaturing gradient gel electrophoresis and direct sequencing, followed by restriction fragment length polymorphism analysis to find a large deletion involving exons 5 and 6. Of 82 mutant alleles, 76 (92%) were genotyped showing 21 mutations. The major mutations were R413P (30.5%), R243Q (7.3%), R241 C (7.3%), IVS4nt-1 (7.3%), T278I (7.3%), E6nt-96A→g (6.1%), Y356X (4.9%), R111X (3.7%), and 442–706delE5/6 (2.4%). Eight new mutations (L52 S, delS70, S70P, Y77X, IVS3nt-1, A132 V, W187 C, and C265Y) and a polymorphism of IVS10nt-14 were detected. In vitro PAH activities of mutant PAH cDNA constructs were determined by a COS cell expression system. Six mutations, viz., R408Q, L52 S, R241 C, S70P, V388 M, and R243Q, had 55%, 27%, 25%, 20%, 16% and 10% of the in vitro PAH activity of normal constructs, respectively. The mean pretreatment phenylalanine concentration (0.83±0.21 mmol/l) of patients carrying the R408Q, R241 C, or L52 S mutation and a null mutation was significantly lower (P<0.0005) than that (1.99±0.65 mmol/l) of patients with both alleles carrying mutations associated with a severe genotype. Simple linear regression analysis showed a correlation between pretreatment phenylalanine concentrations and predicted PAH activity in 29 Japanese PKU patients (y=31.9–1.03x, r=0.59, P<0.0001). Genotype determination is useful in the prediction of biochemical and clinical phenotypes in PKU and can be of particular help in managing patients with this disorder. Received: 24 July 1998 / Accepted: 12 September 1998  相似文献   

10.
Li  Xinyu  Zheng  Shixuan  Ma  Xuekun  Cheng  Kaimin  Wu  Guoyao 《Amino acids》2021,53(1):33-47

Five isonitrogenous and isocaloric diets [containing 54, 30, 15, 10, and 5% fishmeal crude-protein (CP), dry matter (DM) basis] were prepared by replacing fishmeal with poultry by-product meal plus soybean meal to feed juvenile largemouth bass (LMB, with an initial mean body weight of 4.9 g) for 8 weeks. All diets contained 54% CP and 13% lipids. There were four tanks of fish per treatment group (15 fish/tank). The fish were fed twice daily with the same feed intake (g/fish) in all the dietary groups. Results indicated that the inclusion of 15% fishmeal protein in the diet is sufficient for LMB growth. However, some of the fish that were fed diets containing ≤ 15% fishmeal CP had black skin syndrome (characterized by skin darkening and retinal degeneration, as well as intestinal and liver atrophies and structural abnormalities). The concentrations of taurine, methionine, threonine and histidine in serum were reduced (P < 0.05) in fish fed the diets containing 5, 10 and 15% fishmeal CP, compared with the 30 and 54% fishmeal CP diets. Interestingly, the concentrations of tyrosine and tryptophan in serum were higher in fish fed diets with ≤ 15% fishmeal CP than those in the 54% fishmeal CP group. These results indicated that 15% fishmeal CP in the diet containing poultry by-product meal and soybean meal was sufficient for the maximum growth and feed efficiency in LMB but inadequate for their intestinal, skin, eye, and liver health. A reduction in dietary methionine and taurine content and the possible presence of antinutritional factors in the fishmeal replacements diets containing high inclusion levels of soybean meal may contribute to black skin syndrome in LMB. We recommend that the diets of juvenile LMB contain 30% fishmeal CP (DM basis).

  相似文献   

11.
In order to see the effect of CO(2) inhibition resulting from the use of pure oxygen, we carried out a comparative fed-batch culture study of polyhydroxybutyric acid (PHB) production by Ralstonia eutropha using air and pure oxygen in 5-L, 30-L, and 300-L fermentors. The final PHB concentrations obtained with pure O(2) were 138.7 g/L in the 5-L fermentor and 131.3 g/L in the 30-L fermentor, which increased 2.9 and 6.2 times, respectively, as compared to those obtained with air. In the 300-L fermentor, the fed-batch culture with air yielded only 8.4 g/L PHB. However, the maximal CO(2) concentrations in the 5-L fermentor increased significantly from 4.1% (air) to 15.0% (pure O(2)), while it was only 1.6% in the 30-L fermentor with air, but reached 14.2% in the case of pure O(2). We used two different experimental methods for evaluating CO(2) inhibition: CO(2) pulse injection and autogenous CO(2) methods. A 10 or 22% (v/v) CO(2) pulse with a duration of 3 or 6 h was introduced in a pure-oxygen culture of R. eutropha to investigate how CO(2) affects the synthesis of biomass and PHB. CO(2) inhibited the cell growth and PHB synthesis significantly. The inhibitory effect became stronger with the increase of the CO(2) concentration and pulse duration. The new proposed autogenous CO(2) method makes it possible to place microbial cells under different CO(2) level environments by varying the gas flow rate. Introduction of O(2) gas at a low flow rate of 0.42 vvm resulted in an increase of CO(2) concentration to 30.2% in the exit gas. The final PHB of 97.2 g/L was obtained, which corresponded to 70% of the PHB production at 1.0 vvm O(2) flow rate. This new method measures the inhibitory effect of CO(2) produced autogenously by cells through the entire fermentation process and can avoid the overestimation of CO(2) inhibition without introducing artificial CO(2) into the fermentor.  相似文献   

12.
Culture conditions in a jar fermentor for bacterial cellulose (BC) production from A. xylinum BPR2001 were optimized by statistical analysis using Box-Behnken design. Response surface methodology was used to predict the levels of the factors, fructose (X1), corn steep liquor (CSL) (X2), dissolved oxygen (DO) (X3), and agar concentration (X4). Total 27 experimental runs by combination of each factor were carried out in a 10-L jar fermentor, and a three-dimensional response surface was generated to determine the effect of the factors and to find out the optimum concentration of each factor for maximum BC production and BC yield. The fructose and agar concentration highly influenced the BC production and BC yield. However, the optimum conditions according to changes in CSL and DO concentrations were predicted at almost central values of tested ranges. The predicted results showed that BC production was 14.3 g/L under the condition of 4.99% fructose, 2.85% CSL, 28.33% DO, and 0.38% agar concentration. On the other hand, BC yield was predicted in 0.34 g/g under the condition of 3.63% fructose, 2.90% CSL, 31.14% DO, and 0.42% agar concentration. Under optimized culture conditions, improvement of BC production and BC yield were experimentally confirmed, which increased 76% and 57%, respectively, compared to BC production and BC yield before optimizing the culture conditions.  相似文献   

13.
利用大豆乳清废水生产SCP的研究   总被引:1,自引:0,他引:1  
以大豆乳清废水为原料,通过对产朊假丝酵母的培养,使大豆乳清废水中的营养成分被酵母菌吸收利用,从而使菌体生长繁殖产生单细胞蛋白。单细胞蛋白(SCP)产量为8.7 mg/mL,蛋白含量为51.3%;且废水COD去除率达到73.4%,达到了国家乳清废水的标准,从而实现了废水资源化利用的目的。  相似文献   

14.
If a microorganism has a growth coupled production or consumption of acid or alkali, it is possible to use the pH-auxostat as a means of control in continuous fermentation. In using the pH-auxostat, it is possible to separate the inlet substrate flow in two different streams. These will both be pH controlled, with one main flow, consisting of nutrients and a second minor but concentrated flow, of acid or alkali. Hereby, it is possible to vary the difference in pH between the fermentor and the inlet medium. This pH difference is proportional to the steady-state cell mass concentration.(1,2) It is shown that by separating the inlet flow in two different streams and cultivating without any substrate limitation, the maximum growth rate may be obtained while the cell mass concentration will be controlled. This will also give the possibility to reach high cell mass concentrations at mu(max) without the risk of wash-out. A modified expression, based on hydrogen, of the steady-state bio-mass concentration, X, is developed as \documentclass{article}\pagestyle{empty}\begin{document}$$ X = Y_{X/H} \cdot [F_{{\rm Hin}} /(F_{{\rm Hin}} + F_{{\rm Min}} )] \cdot (C_{{\rm Hin}} - C_{{\rm HFERM}} ) $$\end{document} where Y(X/H) is the yield coefficient of cell mass per acid produced. The indexes Hin and Min refer to the inflows of alkali and medium, respectively; C(Hin) is the inlet concentration of hydrogen ions. The boundary condition for the cell mass shows that S(in) > X/Y(X/S), where S(in) is the medium substrate concentration and Y(X/S) is the yield of biomass per consumed substrate. It is shown that when the cell mass concentration exceeds this value, the flow stops. The applicability of the pH-auxostat method is then verified from different experiments. It is hereby used to detect a deviation from the maximal growth rate showing effects on the microbial physiology. With Escherichia coli used as the model organism, the effect on the growth rate of temperature and high concentration of ammonia were investigated.  相似文献   

15.
The effect of dissolved oxygen on citric acid production and oxygen uptake by Candida lipolytica Y 1095 was evaluated in cell recycle and fed-batch fermentation systems. The maximum observed volumetric productivity, which occurred at a dilution rate of 0.06 h(-1), a dissolved oxygen concentration of 80%, and a biomass concentration of 5% w/v, in the cell recycle system, was 1.32 g citric acid/L . h. At these same conditions, the citric acid yield was 0.65 g/g and the specific citric acid productivity was 24.9 mg citric acid/g cell . h. In the cell recycle system, citric acid yields ranged from 0.45 to 0.72 g/g. Both the volumetric and specific citric acid productivities were dependent on the dilution rate and the concentration of dissolved oxygen in the fermentor. Similar productivities (1.29 g citric acid/L . h) were obtained in the fed-batch system operated at a cycle time of 36 h, a dissolved oxygen concentration of 80%, and 60 g total biomass. Citric acid yields in the fed-batch fermentor were consistently lower than those obtained in the cell recycle system and ranged from 0.40 to 0.59 g/g. Although citric acid yields in the fed-batch fermentor were lower than those obtained in the cell recycle system, higher citric:isocitric acid ratios were obtained in the fed-batch fermentor. As in the cell recycle system, both the volumetric and specific citric acid productivities in the fed-batch fermentor were dependent on the cycle time and dissolved oxygen concentration. (c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
This article examines the potential of Jerusalem artichoke as a source for ethanol and single-cell protein SCP. In addition, experimental results are presented on batch fermentation kinetics employing two strains of Kluyveromyces marxianus and one strain of Saccharomyces rosei grown on the extract derived from the tubers of Jerusalem artichoke. Of the three cultures examined, Kluyveromyces marxianus UCD (FST) 55-82 was found to be the best producer of ethanol grown in a simple medium at 35 degrees C. The ethanol production was found to be growth-associated having a mu(max) = 0.41. h(-1) and the ethanol and biomass yields were determined to be Y(p/s) = 0.45 (88% of the theoretical) and Y(x/s) = 0.04 with 92% of the original sugars utilized. On the basis of carbohydrate yields of Jerusalem artichoke reported in the literature and these batch kinetic studies with K. maxxianus, the calculated ethanol yields were found to range from 1400 kg ethanol acre (-1) yr(-1)to a maximum of 2700 kg ethanol acre (-1) yr(-1). The SCP yields for K. marxianus were calculated to range between 130 to 250 kg dry wt cell acre (-1) yr(-1). The potential for developing an integrated process to produce ethanol and SCP is also discussed.  相似文献   

17.
Cell quotas of microcystin (Q(MCYST); femtomoles of MCYST per cell), protein, and chlorophyll a (Chl a), cell dry weight, and cell volume were measured over a range of growth rates in N-limited chemostat cultures of the toxic cyanobacterium Microcystis aeruginosa MASH 01-A19. There was a positive linear relationship between Q(MCYST) and specific growth rate (mu), from which we propose a generalized model that enables Q(MCYST) at any nutrient-limited growth rate to be predicted based on a single batch culture experiment. The model predicts Q(MCYST) from mu, mu(max) (maximum specific growth rate), Q(MCYSTmax) (maximum cell quota), and Q(MCYSTmin) (minimum cell quota). Under the conditions examined in this study, we predict a Q(MCYSTmax) of 0.129 fmol cell(-1) at mu(max) and a Q(MCYSTmin) of 0.050 fmol cell(-1) at mu = 0. Net MCYST production rate (R(MCYST)) asymptotes to zero at mu = 0 and reaches a maximum of 0.155 fmol cell(-1) day(-1) at mu(max). MCYST/dry weight ratio (milligrams per gram [dry weight]) increased linearly with mu, whereas the MCYST/protein ratio reached a maximum at intermediate mu. In contrast, the MCYST/Chl a ratio remained constant. Cell volume correlated negatively with mu, leading to an increase in intracellular MCYST concentration at high mu. Taken together, our results show that fast-growing cells of N-limited M. aeruginosa are smaller, are of lower mass, and have a higher intracellular MCYST quota and concentration than slow-growing cells. The data also highlight the importance of determining cell MCYST quotas, as potentially confusing interpretations can arise from determining MCYST content as a ratio to other cell components.  相似文献   

18.
Magnetotactic bacteria are difficult to grow under defined conditions in culture, which has presented a major obstacle to commercial application of magnetosomes. We studied the relationships among the cell growth, magnetosome formation, dissolved oxygen concentration (DO), and the ability to supply oxygen to the cells. Mass culture of Magnetospirillum gryphiswaldense MSR-1 for the production of magnetosomes was established in a 42-L fermentor under the following conditions: (1) sterile air was the sole gas supplied in the fermentor, and DO could be regulated at any level below 10% saturation by cascading the stir rate to DO, (2) to resolve the paradoxical situation that the cell growth requires higher DO whereas magnetosome formation requires low DO below the detectable range of regular oxygen electrode, DO was controlled to optimal level using the change of cell growth rate, rather than reading from the highly sensitive oxygen electrode, as the signal for determining appropriate DO, and (3) timing and rate of supplying the substrates were determined by measuring cell density and Na-lactate concentration. Under these conditions, cell density (OD565) of strain MSR-1 reached 7.24 after 60-h culture in a 42-L fermentor, and cell yield (dry weight) was 2.17 g/L, the highest yield so far being reported. The yield of magnetosomes (dry weight) was 41.7 mg/L and 16.7 mg/L/day, which were 2.8 and 2.7 times higher than the previously reported yields.  相似文献   

19.
The culture medium composition for cellulolytic bacteria growing on sugar cane wastes was optimized. A modified method of Rosenbrock was employed for shaker culture medium and a factorial plan design for fermentor culture medium optimization. A much more economical and productive medium was obtained for the production of single cell protein (SCP). A biomass concentration of 4.3 g/L was obtained in the optimized medium in batch fermentation, in comparison with 2.8 g/L previously obtained in the traditional medium under similar conditions.  相似文献   

20.
Mutations were studied in phenylalanine hydroxylase gene of phenylketonuria patients from Kemerovo oblast and Altaiskii krai (15 and 2 families, respectively). The following mutations were identified in exons of this gene: R408W, R261Q, R243Q, R158Q, Y414C, Y386C, P281L, Y168H, R68S (lead to amino acid substitutions), R243X (leads to stop codon formation), and three splice site mutations (IVS12nt1g a, IVS2nt-13t g, IVS7nt 1g a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号