首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306925篇
  免费   34088篇
  国内免费   554篇
  2018年   2930篇
  2017年   2641篇
  2016年   3617篇
  2015年   4860篇
  2014年   5841篇
  2013年   7768篇
  2012年   8942篇
  2011年   9051篇
  2010年   5914篇
  2009年   5661篇
  2008年   7861篇
  2007年   7978篇
  2006年   7762篇
  2005年   7419篇
  2004年   7216篇
  2003年   6966篇
  2002年   6767篇
  2001年   17484篇
  2000年   17631篇
  1999年   13443篇
  1998年   3899篇
  1997年   4161篇
  1996年   3870篇
  1995年   3585篇
  1994年   3560篇
  1993年   3605篇
  1992年   10499篇
  1991年   10404篇
  1990年   9870篇
  1989年   9696篇
  1988年   9033篇
  1987年   8415篇
  1986年   7602篇
  1985年   7440篇
  1984年   5857篇
  1983年   5097篇
  1982年   3626篇
  1981年   3187篇
  1980年   3034篇
  1979年   5358篇
  1978年   4118篇
  1977年   3756篇
  1976年   3304篇
  1975年   3782篇
  1974年   3950篇
  1973年   3896篇
  1972年   3427篇
  1971年   3184篇
  1970年   2826篇
  1969年   2742篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Recent studies have emphasized the important role of microRNA (miRNA) clusters and common target genes in disease progression. Despite the known involvement of the miR‐192/215 family in many human diseases, its biological role in Hirschsprung disease (HSCR) remains undefined. In this study, we explored the role of the miR‐192/215 family in the pathogenesis of HSCR. Quantitative real‐time PCR and western blotting measured relative expression levels of miRNAs, mRNAs, and proteins in 80 HSCR patients and 77 normal colon tissues. Targets were evaluated by dual‐luciferase reporter assays, and the functional effects of miR‐192/215 on human 293T and SH‐SY5Y cells were detected by the Transwell assay, CCK8 assay and flow cytometry. MiR‐192/215 was significantly down‐regulated in HSCR tissue samples, and their knockdown inhibited cell migration and proliferation in the human 293T and SH‐SY5Y cell lines. Nidogen 1 (NID1) was confirmed as a common target gene of miR‐192/215 by dual‐luciferase reporter gene assay and its expression was inversely correlated with that of miR‐192/215 in tissue samples and cell lines. Silencing of NID1 could rescue the extent of the suppressing effects by miR‐192/215 inhibitor. The down‐regulation of miR‐192/215 may contribute to HSCR development by targeting NID1.

  相似文献   

2.
3.
α1‐adrenoceptors (α1‐ARs) stimulation has been found to enhance excitatory processes in many brain regions. A recent study in our laboratory showed that α1‐ARs stimulation enhances glutamatergic transmission via both pre‐ and post‐synaptic mechanisms in layer V/VI pyramidal cells of the rat medial prefrontal cortex (mPFC). However, a number of pre‐synaptic mechanisms may contribute to α1‐ARs‐induced enhancement of glutamate release. In this study, we blocked the possible post‐synaptic action mediated by α1‐ARs to investigate how α1‐ARs activation regulates pre‐synaptic glutamate release in layer V/VI pyramidal neurons of mPFC. We found that the α1‐ARs agonist phenylephrine (Phe) induced a significant enhancement of glutamatergic transmission. The Phe‐induced potentiation was mediated by enhancing pre‐synaptic glutamate release probability and increasing the number of release vesicles via a protein kinase C‐dependent pathway. The mechanisms of Phe‐induced potentiation included interaction with both glutamate release machinery and N‐type Ca2+ channels, probably via a pre‐synaptic Gq/phospholipase C/protein kinase C pathway. Our results may provide a cellular and molecular mechanism that helps explain α1‐ARs‐mediated influence on PFC cognitive functions.

  相似文献   

4.
Molluscs, comprising one of the most successful phyla, lack clear evidence of adaptive immunity and yet thrive in the oceans, which are rich in viruses. There are thought to be nearly 120,000 species of Mollusca, most living in marine habitats. Despite the extraordinary abundance of viruses in oceans, molluscs often have very long life spans (10 to 100 years). Thus, their innate immunity must be highly effective at countering viral infections. Antiviral compounds are a crucial component of molluscan defenses against viruses and have diverse mechanisms of action against a wide variety of viruses, including many that are human pathogens. Antiviral compounds found in abalone, oyster, mussels, and other cultured molluscs are available in large supply, providing good opportunities for future research and development. However, most members of the phylum Mollusca have not been examined for the presence of antiviral compounds. The enormous diversity and adaptations of molluscs imply a potential source of novel antiviral compounds for future drug discovery.  相似文献   
5.
Molluscan shell colour   总被引:2,自引:0,他引:2       下载免费PDF全文
The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non‐visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly.  相似文献   
6.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   
7.
Landscape features affect habitat connectivity and patterns of gene flow and hence influence genetic structure among populations. We studied valley oak (Quercus lobata), a threatened species of California (USA) savannas and oak woodlands, with a distribution forming a ring around the Central Valley grasslands. Our main goal was to determine the role of topography and land cover on patterns of gene flow and to test whether elevation or land cover forms stronger barriers to gene flow among valley oak populations. We sampled valley oaks in 12 populations across the range of this species, genotyped each tree at eight nuclear microsatellite loci, and created a series of resistance surfaces by assigning different resistance values to land cover type and elevation. We also estimated recent migration rates and evaluated them with regard to landscape features. There was a significant but weak relationship between Euclidian distance and genetic distance. There was no relationship between genetic distances and land cover, but a significant relationship between genetic distances and elevation resistance. We conclude that gene flow is restricted by high elevations in the northern part of the valley oak range and by high elevations and the Central Valley further south. Migration rate analysis indicated some gene flow occurring east–west but we suggest that the high connectivity in the northern Central Valley is facilitating the formation of these links. We predict that southern populations may become more differentiated in the future through genetic isolation and local adaptation taking place in the face of climate change.  相似文献   
8.
Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (?2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.  相似文献   
9.
Both the development and relief of stress-related psychiatric conditions such as major depression (MD) and post-traumatic stress disorder (PTSD) have been linked to neuroplastic changes in the brain. One such change involves the birth of new neurons (neurogenesis), which occurs throughout adulthood within discrete areas of the mammalian brain, including the dorsal hippocampus (HIP). Stress can trigger MD and PTSD in humans, and there is considerable evidence that it can decrease HIP neurogenesis in laboratory animals. In contrast, antidepressant treatments increase HIP neurogenesis, and their efficacy is eliminated by ablation of this process. These findings have led to the working hypothesis that HIP neurogenesis serves as a biomarker of neuroplasticity and stress resistance. Here we report that local alterations in the expression of Sprouty2 (SPRY2), an intracellular inhibitor of growth factor function, produces profound effects on both HIP neurogenesis and behaviors that reflect sensitivity to stressors. Viral vector-mediated disruption of endogenous Sprouty2 function (via a dominant negative construct) within the dorsal HIP of adult rats stimulates neurogenesis and produces signs of stress resilience including enhanced extinction of conditioned fear. Conversely, viral vector-mediated elevation of SPRY2 expression intensifies the behavioral consequences of stress. Studies of these manipulations in HIP primary cultures indicate that SPRY2 negatively regulates fibroblast growth factor-2 (FGF2), which has been previously shown to produce antidepressant- and anxiolytic-like effects via actions in the HIP. Our findings strengthen the relationship between HIP plasticity and stress responsiveness, and identify a specific intracellular pathway that could be targeted to study and treat stress-related disorders.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号