首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 363 毫秒
1.
混合菌群发酵秸秆可有效提高秸秆纤维的降解率及菌体蛋白的转化率,对拓广蛋白饲料来源、减少环境污染起到积极的作用。本研究以小麦秸秆为原料,在纤维素酶水解预处理的基础上,以米曲霉作为先导菌,进一步分解残留的粗纤维,为后期发酵提供充足的碳源。根据不同微生物的代谢特征和协同机理,试验确定了发酵阶段混合菌群的组成为:米曲霉、产朊假丝酵母和枯草芽胞杆菌;接种顺序为:先接种米曲霉,再接种产朊假丝酵母,最后接种枯草芽胞杆菌。正交试验表明,影响发酵主要因素的主次顺序为:秸秆与麸皮配比>接种比例>发酵时间>接种量>发酵温度;发酵的最适条件为:米曲霉的接种量2.5%,发酵12h后接入5%的产朊假丝酵母,继续发酵8h后接入2.5%的枯草芽胞杆菌,发酵温度为28℃,秸秆与麸皮的配比为4∶1,尿素添加量为1.2%;结合动力学分析,将混合菌群的发酵时间优化为35h,发酵产物中粗蛋白含量由原来的5.47%提高到25%左右。对最适发酵条件下的动力学过程进行了探讨,建立了以Logistic方程为基础的数学模型和动力学方程。本研究表明,混合菌群发酵秸秆提高了发酵产物中的粗蛋白含量。动力学分析对于了解发酵机理、掌握整个发酵过程中混合菌群生长的动态变化、优化发酵工艺具有重要的指导意义。  相似文献   

2.
马铃薯渣固体发酵生产菌体蛋白饲料的研究   总被引:6,自引:0,他引:6  
试验以提高马铃薯渣的营养价值为目的,以马铃薯渣为主原料,选用黑曲霉,白地霉,热带假丝酵母,酿酒酵母4个菌株,采用了多菌协生固态发酵技术,经糖比,发酵,干燥等工艺,试制出了菌体蛋白饲料。通过对其感官特征的比较和主要理化指标的定量分析,结果表明,经黑曲霉糖化多菌种协生(白地霉:热带假丝酵母:酿酒酵母=8:1.5:0.5,总接种量为10%,28℃,56h)发酵后,产物蛋白质含量可提高到22.16%,并使原料的霉腐味等异味消除。  相似文献   

3.
利用枯草芽胞杆菌 ,以玉米废渣为原料发酵生产饲用微生物添加剂 ,结果发酵产品的活菌数为 1.76× 10 1 1 个 /kg,粗蛋白质含量为 5 2 % ,比原料的粗蛋白质含量提高了 2 8% ;用均匀设计的方法设计四种酵母菌混合发酵模式 ,以啤酒糟为原料 ,生产饲用微生物添加剂 ,结果四种酵母菌的最佳接种量比例为 :酿酒酵母 :红酵母 :热带假丝酵母 :白地霉 =5 :0 :0 :5 ;发酵产品的最高活菌数为 2 .77× 10 1 1个 /kg,最高粗蛋白含量为 6 2 .81%。  相似文献   

4.
枯草芽孢杆菌产β-甘露聚糖酶固体发酵条件的优化   总被引:1,自引:0,他引:1  
芽孢杆菌是产甘露聚糖酶的优良菌株,首次研究芽孢杆菌固体发酵条件的优化。以天然麸皮作为基本原料,研究利用枯草芽孢杆菌WY34固体发酵生产β-片露聚糖酶的发酵条件。最佳固体发酵培养条件为:麸皮5g,初始水分含量71%,初始pH7.0,接种量为2mL,1%Tween-80,0.4g魔芋粉,培养温度50℃。在最适条件下培养5d,甘露聚糖酶酶活高达7,650U/g干基,是未优化前酶活的2.78倍。  相似文献   

5.
芽孢杆菌是产甘露聚糖酶的优良菌株,首次研究芽孢杆菌固体发酵条件的优化。以天然麸皮作为基本原料,研究利用枯草芽孢杆菌WY34固体发酵生产β-甘露聚糖酶的发酵条件。最佳固体发酵培养条件为:麸皮5 g,初始水分含量71%,初始pH 7.0,接种量为2 mL,1%Tween-80,0.4 g魔芋粉,培养温度50℃。在最适条件下培养5 d,甘露聚糖酶酶活高达7,650 U/g干基,是未优化前酶活的2.78倍。  相似文献   

6.
利用多菌体混合发酵转化玉米秸秆的研究   总被引:3,自引:0,他引:3  
利用氨法对玉米秸秆进行前处理,依据多种微生物共生及代谢的特性,建立了绿色木霉、枯草芽胞杆菌、黑曲霉和酵母所构成的多菌种共发酵的体系,通过正交实验法优化出几组有实践前景的多菌种共发酵的技术路线和工艺方法,基本上实现了利用微生物转化玉米秸秆的目的。实验结果显示,优化的多菌种共发酵工艺,在发酵温度为27℃pH为5.0发酵8 d后粗纤维利用率为65%。实验结果为纤维素资源的开发利用奠定了基础。  相似文献   

7.
利用废水液体发酵生产单细胞蛋白的实验研究   总被引:4,自引:0,他引:4  
利用工厂废水或动物血制作培养基,以液体发酵方式培养产朊假丝酵母NCTC3576菌及甘饲8501菌.离心分离菌体,测定菌体生物生长量,并观察蔗糖、温度、酸碱度、发酵时间、种子液接种量对生物生长量的影响.生化方法分析NCTC3576菌单细胞蛋白的品质,氨基酸分析仪分析单细胞蛋白的氨基酸组成.结果表明,玉米淀粉厂废水,不必调pH,不用添加其它任何组分,即可直接用于液体发酵产朊假丝酵母NCTC3576菌;pH4.0~7.0均对生长量无明显影响;24h培养已达到最好生长量,再延长时间已不能提高产量;28℃及37℃培养无明显差别,在3%~17%种子液接种量范围内,接种量与生长量有正相关关系.研究表明,玉米淀粉厂废水单一成分即可用于液体发酵产朊假丝酵母NCTC3576菌,原料成本低,且易于产品分离纯化和工业化生产中的连续培养,是单细胞蛋白生产的良好途径.  相似文献   

8.
作物秸秆是重要的农业资源,为有效利用作物秸秆,本文利用枯草芽胞杆菌发酵玉米秸秆,配制成人工饲料来饲养家蝇。从菌液加入量和发酵天数来考察对家蝇饲养效果的影响,结果表明:枯草芽胞杆菌菌液加入量为3 mL(3.2×10~(11)cfu/mL),发酵天数3d时对家蝇饲养效果较好,幼虫质量为16.91g,与不加菌液的对照组(13.30g)相比存在显著性差异(P0.05)。经过枯草芽胞杆菌发酵和家蝇幼虫处理后,玉米秸秆的纤维素、半纤维素、木质素的绝对含量都显著降低(P0.05)。经过家蝇取食后的饲料残渣,经检测,有机质等均达到国家标准。最优家蝇饲料配方为:枯草芽胞杆菌菌液加入量3mL(3.2×10~(11) cfu/mL),发酵天数3d,玉米秸秆和麦麸各125g,每250g饲料添加初孵幼虫200mg。本研究利用枯草芽胞杆菌发酵玉米秸秆,提高其营养价值,并进一步饲养家蝇,为秸秆的资源化利用和家蝇规模化饲养奠定了基础。  相似文献   

9.
为了探索金针菇菌渣和醋渣2种农业废弃物资源化利用的方式,采用固态发酵法对金针菇菌渣和醋渣进行发酵。通过单菌发酵实验和多菌发酵实验探究其固态发酵的最佳方式及菌种组成,并摸索其最优的原料配比和发酵时间,随后通过单因素实验对发酵温度、接种量和pH进行优化,并在此基础上设计三因素三水平的正交实验以进一步优化发酵工艺。研究表明,金针菇菌渣和醋渣固态发酵的最佳发酵方式为多菌发酵,且混合菌种的组成及比例为枯草芽孢杆菌∶黄孢原毛平革菌∶热带假丝酵母=1∶1∶1;发酵原料金针菇菌渣和醋渣的配比为7∶3,发酵3 d,粗蛋白质含量达到峰值;单因素实验和正交实验的结果显示其最佳发酵条件为发酵温度26℃、接种量7%以及pH 7.5,在该条件下发酵3 d,发酵产物中的粗蛋白质含量为17.90%。研究结果为农业废弃物资源化高效利用提供了一种新途径。  相似文献   

10.
以棉籽饼为原料,采用黑曲霉(Aspergillus niger)、热带假丝酵母(Candida tropicalis)、短小芽胞杆菌(Bacillus pumilus)、保加利亚乳杆菌(Lactobacillus bulgaricus)4种微生物的复合菌剂作为棉籽饼固体发酵的主要菌种。通过测定发酵液中糖含量的变化,考察4种菌株两两之间的关系,测定棉籽饼脱毒率和发酵前后蛋白含量。结果显示:4种菌株可以互惠共生;当黑曲霉、热带假丝酵母、短小芽胞杆菌、保加利亚乳杆菌的接种比例为2:2:1:1,固体发酵后蛋白含量为37.71%,比发酵前提高了2.74%,是良好的蛋白饲料。棉籽饼脱毒率为84.63%,棉酚含量为116.20mg/kg,达到饲用标准。  相似文献   

11.
Optimization of solid substrate fermentation of wheat straw   总被引:9,自引:0,他引:9  
Optimal conditions for solid substrate fermentation of wheat straw with Chaetomium cellulolyticum in laboratory-scale stationary layer fermenters were developed. The best pretreatment for wheat straw was ammonia freeze explosion, followed by steam treatment, alkali treatment, and simple autoclaving. The optimal fermentation conditions were 80% (w/w) moisture content; incubation temperature of 37 degrees C; 2% (w/w) unwashed mycelial inoculum; aeration at 0.12 L/h/g; substrate thickness of 1 to 2 cm; and duration of three days. Technical parameters for this optimized fermentation were: degree of substance utilization, 27.2%; protein yield/substrate, 0.09 g; biomass yield/bioconverted substrate, 0.40 g; degree of bioconversion of total available sugars in the substrate, 60.5%; specific efficiency of bioconversion, 70.8%; and overall efficiency of biomass production from substrate, 42.7%. Mixed culturing of Candida utilis further increased biomass production by 20%. The best mode of fermentation was a semicontinuous fed-batch fermentation where one-half of the fermented material was removed at three-day intervals and replaced by fresh substrate. In this mode, protein production was 20% higher than in batch mode, protein productivity was maintained over 12 days, and sporulation was prevented.  相似文献   

12.
Pilot-scale semisolid fermentation of straw.   总被引:3,自引:2,他引:1       下载免费PDF全文
Semisolid fermentation of ryegrass straw to increase its animal feed value was successfully performed on a pilot scale. The pilot plant, which could handle 100 kg of straw per batch, was designed so that all major operations could take place in one vessel. The straw was hydrolyzed at 121 degrees C for 30 min with 0.5 N H2SO4 (7:3 liquid:solid), treated with ammonia to raise the pH to 5.0, inoculated with Candida utilis, and fermented in a semisolid state (70% moisture). During fermentation the straw was held stationary with air blown up through it. Batch fermentation times were 12 to 29 h. Semisolid fermentation did not require agitation and supported abundant growth at 20 to 40 degrees C even at near zero oxygen tensions. Fermentation increased the protein content, crude fat content, and in vitro rumen digestibility of the straw.  相似文献   

13.
Semisolid fermentation of ryegrass straw to increase its animal feed value was successfully performed on a pilot scale. The pilot plant, which could handle 100 kg of straw per batch, was designed so that all major operations could take place in one vessel. The straw was hydrolyzed at 121 degrees C for 30 min with 0.5 N H2SO4 (7:3 liquid:solid), treated with ammonia to raise the pH to 5.0, inoculated with Candida utilis, and fermented in a semisolid state (70% moisture). During fermentation the straw was held stationary with air blown up through it. Batch fermentation times were 12 to 29 h. Semisolid fermentation did not require agitation and supported abundant growth at 20 to 40 degrees C even at near zero oxygen tensions. Fermentation increased the protein content, crude fat content, and in vitro rumen digestibility of the straw.  相似文献   

14.
利用本研究室已构建的重组菌Bacillus subtilis/pBSMuL3-α/β-CGTase对产B.stearothermophilus环糊精葡萄糖基转移酶的发酵产酶进行了优化,考察了培养基中重要成分:碳源、有机氮源、无机氮源、有机与无机氮源质量比、碳源与氮质量比、金属离子种类等单因素对该重组菌产α/β-CGTase的影响,并采用正交实验对发酵培养基进行优化,对优化结果分析可知,重组菌B.subtilis/pBSMuL3-α/β-CGTase发酵产α/β-CGTase的最优培养基成本为:葡萄糖5 g/L,氮源(鱼骨蛋白胨∶NH4Cl=3∶1)25 g/L,1 mmol/L Mg^2+。在最优条件下发酵培养,α/β-CGTase的酶活由原来TB发酵培养基的9.20 U/mL提高至20.32 U/mL,是优化前酶活的2.2倍,为α/β-环糊精葡萄糖基转移酶的工业应用提供了理论支持。  相似文献   

15.
Growth of Aureobasidium pullulans on straw hydrolysate.   总被引:2,自引:2,他引:0       下载免费PDF全文
Growth characteristics and cell properties of Aureobasidium (Pullularia) pullulans were studied. The organism grew well on an acid hydrolysate of ryegrass straw over a wide range of pH and temperature. The optimum temperature and pH for the growth of the organism were 32 degrees C and 5.5, respectively. A cell yield of 1.5 g/liter of straw hydrolysate was obtained. The dried cell mass contained 42.6% crude protein, 0.4% crude fat, and 6.4% nucleic acids. The essential amino acid profile of the microbial protein was comparable to that of Candida utilis. A rat feeding study indicated that the A. pullulans cells were not toxic and that the feed intake, weight gain, and protein efficiency ratio values were superior to those obtained with C. utilis. Once the question of mathogenicity is resolved, A. pullulans could be useful for production of single-cell protein from cellulosic wastes.  相似文献   

16.
Growth characteristics and cell properties of Aureobasidium (Pullularia) pullulans were studied. The organism grew well on an acid hydrolysate of ryegrass straw over a wide range of pH and temperature. The optimum temperature and pH for the growth of the organism were 32 degrees C and 5.5, respectively. A cell yield of 1.5 g/liter of straw hydrolysate was obtained. The dried cell mass contained 42.6% crude protein, 0.4% crude fat, and 6.4% nucleic acids. The essential amino acid profile of the microbial protein was comparable to that of Candida utilis. A rat feeding study indicated that the A. pullulans cells were not toxic and that the feed intake, weight gain, and protein efficiency ratio values were superior to those obtained with C. utilis. Once the question of mathogenicity is resolved, A. pullulans could be useful for production of single-cell protein from cellulosic wastes.  相似文献   

17.
产木聚糖酶白地霉培养特性及部分纯化的酶学特性   总被引:2,自引:0,他引:2  
本文对白地霉Ref1的培养特性、产酶条件和酶学特性进行了初步研究。结果表明:该菌为低温型菌株,其最佳生长条件为pH6、20℃和酵母膏作为氮源;最佳产酶条件为pH3-7、15℃及以酵母膏氮源;条件优化后产酶可达118.7U/mL,可溶蛋白含量可达到60μg/mL,酶溶液的比活可达到1250U/mg蛋白质;该木聚糖酶的最适反应温度和pH分别为50℃和5,金属离子Mg2+、Na+和8mmol/L的Fe2+、Cu2+、Zn2+等对木聚糖酶的活性有抑制作用,而Ca2+、4mmol/L的Fe2+、Cu2+、Zn2+和8mmol/L的Mn2+等对该酶反应则有促进作用;该木聚糖酶在保温2h后在15-40℃范围内能保持80%以上的酶活性,在50℃时能保持68%的酶活性;用lineweaver-Burk作图法(双倒数作图法)求得该酶的最大反应速度Vmax和Km值分别为163.38mmol/mg/min和0.75mg/mL。  相似文献   

18.
Two crystalline red pigments with phytotoxic activity were isolated from culture filtrates of Alternaria eichhorniae, a pathogen of the water hyacinth Eichhornia crassipes. The pigments were present in the ratio of 4:1 and were identified as bostrycin and 4-deoxybostrycin, respectively. This is the first isolation of 4-deoxybostrycin from a natural source. Bostrycin, 4-deoxybostrycin, and their isopropylidene derivatives induced necrosis on tested plant leaves comparable to the A. eichhorniae-induced necrosis on water hyacinth. The lowest phytotoxic concentrations of crystalline bostrycin and 4-deoxybostrycin on water hyacinth leaves were about 7 and 30 microgram/ml, respectively. Both substances were inhibitory to Bacillus subtilis but were inactive against the fungus Geotrichum candidum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号