首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Pseudomonas aeruginosa is an opportunistic human pathogen and has been established as a model organism to study bacterial biofilm formation. At least three exopolysaccharides (alginate, Psl, and Pel) contribute to the formation of biofilms in this organism. Here mutants deficient in the production of one or more of these polysaccharides were generated to investigate how these polymers interactively contribute to biofilm formation. Confocal laser scanning microscopy of biofilms formed in flow chambers showed that mutants deficient in alginate biosynthesis developed biofilms with a decreased proportion of viable cells than alginate-producing strains, indicating a role of alginate in viability of cells in biofilms. Alginate-deficient mutants showed enhanced extracellular DNA (eDNA)-containing surface structures impacting the biofilm architecture. PAO1 ΔpslA Δalg8 overproduced Pel, and eDNA showing meshwork-like structures presumably based on an interaction between both polymers were observed. The formation of characteristic mushroom-like structures required both Psl and alginate, whereas Pel appeared to play a role in biofilm cell density and/or the compactness of the biofilm. Mutants producing only alginate, i.e., mutants deficient in both Psl and Pel production, lost their ability to form biofilms. A lack of Psl enhanced the production of Pel, and the absence of Pel enhanced the production of alginate. The function of Psl in attachment was independent of alginate and Pel. A 30% decrease in Psl promoter activity in the alginate-overproducing MucA-negative mutant PDO300 suggested inverse regulation of both biosynthesis operons. Overall, this study demonstrated that the various exopolysaccharides and eDNA interactively contribute to the biofilm architecture of P. aeruginosa.  相似文献   

2.
Biofilms are communities of surface-attached microbial cells that resist environmental stresses. In this study, we found that low concentrations of ethanol increase biofilm formation in Pseudomonas aeruginosa PAO1 but not in a mutant of it lacking both Psl and Pel exopolysaccharides. Low concentrations of ethanol also increased pellicle formation at the air–liquid interface.  相似文献   

3.
Extracellular polysaccharides comprise a major component of the biofilm matrix. Many species that are adept at biofilm formation have the capacity to produce multiple types of polysaccharides. Pseudomonas aeruginosa produces at least three extracellular polysaccharides, alginate, Pel and Psl, that have been implicated in biofilm development. Non-mucoid strains can use either Pel or Psl as the primary matrix structural polysaccharide. In this study, we evaluated a range of clinical and environmental P.aeruginosa isolates for their dependence on Pel and Psl for biofilm development. Mutational analysis demonstrates that Psl plays an important role in surface attachment for most isolates. However, there was significant strain-to-strain variability in the contribution of Pel and Psl to mature biofilm structure. This analysis led us to propose four classes of strains based upon their Pel and Psl functional and expression profiles. Our data also suggest that Pel and Psl can serve redundant functions as structural scaffolds in mature biofilms. We propose that redundancy could help preserve the capacity to produce a biofilm when exopolysaccharide genes are subjected to mutation. To test this, we used PAO1, a common lab strain that primarily utilizes Psl in the matrix. As expected, a psl mutant strain initially produced a poor biofilm. After extended cultivation, we demonstrate that this strain acquired mutations that upregulated expression of the Pel polysaccharide, demonstrating the utility of having a redundant scaffold exopolysaccharide. Collectively, our studies revealed both unique and redundant roles for two distinct biofilm exopolysaccharides.  相似文献   

4.
Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self-generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self-assembly process and several distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural differentiation remain largely unknown. The distinct roles of different EPS have been addressed in the present report. Both Pel and Psl polysaccharides are required for type IV pilus-independent microcolony formation in the initial stages of biofilm formation by Pseudomonas aeruginosa PAO1. Both Pel and Psl polysaccharides are also essential for subpopulation interactions and macrocolony formation in the later stages of P. aeruginosa PAO1 biofilm formation. Pel and Psl polysaccharides have different impacts on Pseudomonas quinolone signal-mediated extracellular DNA release in P. aeruginosa PAO1 biofilms. Psl polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.  相似文献   

5.
6.
7.
The entomogenous filamentous fungus, Beauveria bassiana expresses two hydrophobin genes, hyd1 and hyd2, hypothesized to be involved in cell surface hydrophobicity, adhesion, virulence, and to constitute the protective spore coat structure known as the rodlet layer. Targeted gene inactivation of hyd1 resulted in seemingly 'bald' conidia that contained significantly altered surface fascicles or bundles. These cells displayed decreased spore hydrophobicity, loss of water mediated dispersal, changes in surface carbohydrate epitopes and β-1,3-glucan distribution, lowered virulence in insect bioassays, but no effect on adhesion. In contrast, Δhyd2 mutants retained distorted surface bundles, but truncated/incomplete rodlets could be seen within the bundles. Δhyd2 conidia displayed both decreased cell surface hydrophobicity and adhesion, but the mutant was unaffected in virulence. The double Δhyd1Δhyd2 mutant was distinct from the single mutants, lacking both bundles and rodlets, and displaying additively decreased cell surface hydrophobicity, reduced cell attachment and lowered virulence than the Δhyd1 mutant. Epitope tagged constructs of the proteins were used to examine the expression and distribution of the proteins and to demonstrate the continued presence of Hyd2 in the Δhyd1 strain and vice versa. The implications of our results with respect to fascicle and rodlet assembly on the spore surface are discussed.  相似文献   

8.
Summary Erwinia chrysanthemi (EC16) produces four extracellular pectate lyases (Pels) that are resolved by their isoelectric pH (pI): Pel A, pI 4.2; Pel B, pI 8.8; Pel C, pI 9.0; and Pel E, pI 10.0. To investigate the organization of the pel genes and to compare the properties of the enzymes, the cognate structural genes were isolated from an EC16 cosmid library. Physical analysis of the Pel+ plasmids revealed that pelA and pelE were present on a 8.2 kb DNA segment, while pelB and pelC were present on a 5.9 kb DNA segment. These four pel genes were resolved by subcloning or Tn5 mutagenesis. The properties of each Pel, obtained from the Escherichia coli periplasm, were determined. The pIs of the enzymes were identical to those of the EC16 extracellular enzymes. While each Pel was of the endo-type, differences among them were noted in the quantities of the various reaction products. Pel E was found to be most effective in causing maceration and inducing electrolyte loss and cell death in potato tuber tissue, followed by Pel B and Pel C. In contrast to these basic Pels, the acidic enzyme, Pel A, did not macerate plant tissue or induce electrolyte loss and cell death. These findings are discussed in the context of the plant pathogenicity of E. chrysanthemi.  相似文献   

9.
Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms.  相似文献   

10.
The cell surface hydrophobicity and charge as well as surface polysaccharides of eight independent prototrophic hrp::-Tn5 mutants (Lindgren et al., J. Bacteriol. 168 , 512–522, 1986) were compared to the wild-type parent strain NPS3121 of Pseudomonas syringae pv. phaseolicola. No significant differences were found in cell surface charge, but mutant strain NPS4005 exhibited significantly lower cell surface hydrophobicity than the wild-type and the other mutant strains. The mutant strains all retained the ability to produce the exopolysaccharides (EPS) levan, a neutral fructan, and alginate, an acidic polymer. Relative amounts of EPS produced in vitro was dependent on culture conditions. Lipopolysaccharide (LPS) chemotypes were similar for all nine strains. Chemical as well as 13C-NMR analyses of the O-antigens from four wild-type strains of P. s. pv. phaseolicola representing two physiological races as well as the O-antigens of two strains of P. s. pv. syringae which belong to the same serogroup as P. s. pv. phaseolicola indicated that all of the O-antigens were very similar if not identical. LPS of three strains of P. s. pv. phaseolicola produced in vitro or in planta were also compared and no significant differences were detected. The altered phenotype of the Tn5 mutants of P. s. pv. phaseolicola does not appear to be due to changes in the ability to produce exopolysaccharides or to an altered composition of cell surface polysaccharides (LPS and EPS). However, a change in an unidentified cell surface component(s) leading to lowered cell surface hydrophobicity of mutant strain NPS4005 may be important.  相似文献   

11.
Summary Escherichia coli pel - mutants inhibit the penetration of bacteriophage lambda DNA into the cell. Using P1 mediated cotransduction, we mapped pel - mutations between markers fadD and eda in the interval of minute 40 of the revised E. coli K-12 map. This places pel in the same region as genes kdgR and ptsM. Mutations in kdgR usually do not alter the Pel phenotype, and vice versa. In contrast, about 30% of ptsM - mutants are also pel -, and all pel - mutants isolated are ptsM -. These results suggest that pel and ptsM are one and the same gene. This interpretation would identify the bacterial product required for injection of phage DNA as a component of the phosphoenolpyruvate-dependent phosphotransferase system specific for mannose, glucosamine, glucose and fructose. However, the experimental results do not exclude an alternative explanation: that pel and ptsM identify two closely linked genes which would be simulataneously affected at high frequency by a particular mutational event.  相似文献   

12.
胞外多糖是假单胞菌生物被膜的重要组成部分,能增强菌体对外界环境、抗菌剂和宿主防御的耐受性.假单胞菌能产生3种与生物被膜形成密切相关的核心胞外多糖:褐藻胶、Psl和Pel,它们在细菌细胞中的合成和转运分别依赖对应的褐藻胶、Psl和Pel生物合成系统.因此,本综述系统全面地总结了假单胞菌3种胞外多糖生物合成系统结构生物学的...  相似文献   

13.
Acinetobacter calcoaceticus RAG-1 and MR-481, two standard strains used in microbial adhesion to hydrocarbons (MATH), were characterized by contact angles, pH-dependent zeta potentials, elemental surface composition by X-ray photoelectron spectroscopy (XPS), and molecular composition by infrared spectroscopy (IR). Negatively stained (methylamine tungstate) and ruthenium red-stained cells were studied by transmission electron microscopy to reveal the absence or presence of surface appendages. Despite the fact thatA. calcoaceticus RAG-1 is known to be extremely hydrophobic in MATH, whereas MR-481 is a completely non-hydrophobic mutant, neither XPS nor IR indicated a significant difference in chemical composition of the cell surfaces. Contact angles with polar liquids, water and formamide, were considerably higher on RAG-1 than on MR-481, in accordance with their relative hydrophobicities as measured by MATH. However, no significant differences in contact angles were observed between the two strains with apolar liquids like diiodomethane,-bromonaphthalene, and hexadecane. Fibrous extensions on RAG-1, observed after ruthenium red staining, were absent on the non-hydrophobic mutant MR-481. Tentatively, these extensions could be held responsible for the hydrophobicity ofA. calcoaceticus RAG-1.  相似文献   

14.
Bacterial motilities participate in biofilm development. However, it is unknown how/if bacterial motility affects formation of the biofilm matrix. Psl polysaccharide is a key biofilm matrix component of Pseudomonas aeruginosa. Here we report that type IV pili (T4P)‐mediated bacterial migration leads to the formation of a fibre‐like Psl matrix. Deletion of T4P in wild type and flagella‐deficient strains results in loss of the Psl‐fibres and reduction of biofilm biomass in flow cell biofilms as well as pellicles at air‐liquid interface. Bacteria lacking T4P‐driven twitching motility including those that still express surface T4P are unable to form the Psl‐fibres. Formation of a Psl‐fibre matrix is critical for efficient biofilm formation, yet does not require flagella and polysaccharide Pel or alginate. The Psl‐fibres are likely formed by Psl released from bacteria during T4P‐mediated migration, a strategy similar to spider web formation. Starvation can couple Psl release and T4P‐driven twitching motility. Furthermore, a radial‐pattern Psl‐fibre matrix is present in the middle of biofilms, a nutrient‐deprived region. These imply a plausible model for how bacteria respond to nutrient‐limited local environment to build a polysaccharide‐fibre matrix by T4P‐dependent bacterial migration strategy. This strategy may have general significance for bacterial survival in natural and clinical settings.  相似文献   

15.
This study was focused on the role of two types of diametrically different carbon sources, n-alkanes represented by a mixture of dodecane–hexadecane, and phenol on modification of the cell surface hydrophobicity. Capabilities of using either solely hydrocarbons or hydrocarbons in the mixture with phenol as well as phenol itself by yeast species Candida maltosa, Yarrowia lipolytica and Pichia guilliermondii were investigated. Studies were complemented by cell biomass formation measurements. The corresponding cell surface hydrophobicity was assessed by microbial adhesion to the hydrocarbon test (MATH). Degradation of phenol was examined using GC-SPE technique, whereas hydrocarbons were extracted prior to gravimetric determination. Results obtained indicated that the hydrophobic or hydrophilic nature of the carbon source had significant influence on the cell surface hydrophobicity. Although the results differed for some individual yeast strains, the generalization can be made that there is the correlation between the best hydrocarbon and phenol degradation and corresponding cell wall properties of the yeast examined.  相似文献   

16.
In order to investigate biofouling problems, the fundamental behaviors of initial bacterial adhesion and biofilm development on four different nanofiltration (NF) membranes were evaluated using Pseudomonas aeruginosa PAO1 as a model bacterial strain. Initial cell adhesion was considerably higher on an aromatic polyamide-based NF membrane with a hydrophobic and rough surface, whereas cell aggregation on a polypiperazine-based NF membrane with a relatively hydrophilic and smooth surface was lower. Moreover, significant differences in the structural heterogeneity of the biofilms were observed among the four NF membranes. This study shows that the surface roughness and hydrophobicity of a membrane play an important role in determining initial cell adhesion, aggregation and favorable localization sites for colony formation. In addition, it was found that biofilm development was strongly influenced by the surface morphology of a membrane.  相似文献   

17.
A dynamic mathematical model has been developed and validated to describe the synthesis of pectate lyases (Pels), the major virulence factors in Dickeya dadantii. This work focuses on the simultaneous modeling of the metabolic degradation of pectin by Pel enzymes and the genetic regulation of pel genes by 2-keto-3-deoxygluconate (KDG), a catabolite product of pectin that inactivates KdgR, one of the main repressors of pel genes. This modeling scheme takes into account the fact that the system is composed of two time-varying compartments: the extracellular medium, where Pel enzymes cleave pectin into oligomers, and the bacterial cytoplasm where, after internalization, oligomers are converted to KDG. Using the quasi-stationary state approximations, the model consists of some nonlinear differential equations for which most of the parameters could be estimated from the literature or from independent experiments. The few remaining unknown parameters were obtained by fitting the model equations against a set of Pel activity data. Model predictions were verified by measuring the time courses of bacterial growth, Pel production, pel mRNA accumulation, and pectin consumption under various growth conditions. This work reveals that pectin is almost totally consumed before the burst of Pel production. This paradoxical behavior can be interpreted as an evolutionary strategy to control the diffusion process so that as soon as a small amount of pectin is detected by the bacteria in its surroundings, it anticipates more pectin to come. The model also predicts the possibility of bistable steady states in the presence of constant pectin compounds.  相似文献   

18.
Adhesion ability of bifidobacteria to the intestinal mucosa is considered to be the prerequisite for colonization of bifidobacteria and can protect against gastrointestinal pathogens infection. The aim of this study was to investigate bifidobacterial surface traits related to adhesion ability in vitro and characterize the cell surface substances that may be involved in the adhesion process of bifidobacteria. Twelve strains of Bifidobacterium spp. were studied for the correlation among their adhesion ability, autoaggregation ability and surface hydrophobicity. The strain that exhibited good adhesion ability also showed high degree of hydrophobicity and strong autoaggregation ability. Pepsin treatment had negative effect on the surface traits and adhesion ability of B. bifidum KLDS2.0603 (P < 0.01), it revealed that hydrophobicity, autoaggregation and adhesion process maybe mediated by proteinaceous components on the surface of cell. Moreover, the adhesion and autoaggregation ability decreased after extraction of B. bifidum KLDS2.0603 with 5 mol l−1 LiCl, and an unreported 50-kDa surface protein which can bind to Caco-2 cell was observed by western blotting. Our results indicated that surface hydrophobicity and autoaggregation ability can be used together for preliminary screening the strains with high adhesion ability, and the present of the surface proteinaceous components would contribute to understand the interactions between bifidobacteria and human intestinal mucosa.  相似文献   

19.
20.
Salmochelins are glucosylated forms of enterobactin (enterochelin) and contribute to the virulence of Salmonella enterica and some extra‐intestinal pathogenic Escherichia coli (ExPEC). Fes, IroD and IroE esterases degrade salmochelins and enterobactin to release iron. We investigated the apparently redundant role of these esterases in virulence and in salmochelin production and utilization of the ExPEC strain χ7122. The ΔiroD, ΔfesΔiroD and ΔfesΔiroDΔiroE mutants displayed attenuated virulence phenotypes in an avian systemic infection model. Growth of ΔfesΔiroD and ΔfesΔiroDΔiroE mutants was severely reduced in the presence of conalbumin, and although enterobactin was produced, no salmochelins were detected in the culture supernatants of these mutants. Elimination of catecholate synthesis via an entA deletion in a ΔfesΔiroDΔiroE restored growth in the presence of conalbumin, but only partially restored the virulence of the strain. Salmochelin production was reestablished by reintroducing active esterases. Intracellular accumulation of cyclic mono‐glucosylated enterobactin was observed in the triple mutant ΔfesΔiroDΔiroE, and deletion of fepC, required for catecholate import into the cytoplasm, restored salmochelin detection in supernatants. These results suggest that in the absence of esterases, cyclic salmochelins are synthesized and secreted, but remain cell‐bound after internalization indicating that esterase‐mediated degradation is required for re‐secretion of catecholate siderophore molecules following their utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号