首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Further studies of human whole-body radiofrequency (RF) absorption rates were carried out using a TEM-cell exposure system. Experiments were done at one frequency near the grounded resonance frequency (approximately 40 MHz), and at several below-resonance frequencies. Absorption rates are small for the K and H orientations of the body, even when grounded. For the body trunk in an E orientation, the absorption rate of a sitting person is about half of the rate for the same person standing with arms at the sides; the latter in turn is about half the rate for the same subject standing with arms over the head. Two-body interactions cause no increase in absorption rates for grounded people. They do, however, increase the absorption rates for subjects in an E orientation in free space; the largest interaction occurs when one subject is lambda/2 behind the other (as seen by the incident wave). When these results are applied to practical occupational exposure situations, the whole-body specific absorption rate does not exceed the ANSI limit of 0.4 W/kg for exposures permitted by the ANSI standard (C95.1-1982) at frequencies from 7 to 40 MHz.  相似文献   

2.
To test the generality of radiofrequency radiation-induced changes in 45Ca2+ efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude-modulated (AM) at 16 Hz, at specific absorption rates (SAR) of 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005 W/kg. Significant 45Ca2+ efflux was obtained at SAR values of 0.05 and 0.005 W/kg. Enhanced efflux at 0.05 W/kg peaked at the 13-16 Hz and at the 57.5-60 Hz modulation ranges. A Chinese hamster-mouse hybrid neuroblastoma was also shown to exhibit enhanced radiation-induced 45Ca2+ efflux at an SAR of 0.05 W/kg, using 147 MHz, AM at 16 Hz. These results confirm that amplitude-modulated radiofrequency radiation can induce responses in cells of nervous tissue origin from widely different animal species, including humans. The results are also consistent with the reports of similar findings in avian and feline brain tissues and indicate the general nature of the phenomenon.  相似文献   

3.
We have studied the non-thermal effects of radiofrequency (RF) electromagnetic fields (EMFs) on Ba(2+) currents (I Ba 2+) through voltage-gated calcium channels (VGCC), recorded in primary cultures of rat cortical neurons using the patch-clamp technique. To assess whether low-level acute RF field exposure could modify the amplitude and/or the voltage-dependence of I Ba 2+, Petri dishes containing cultured neurons were exposed for 1-3 periods of 90 s to 900 MHz RF-EMF continuous wave (CW) or amplitude-modulated according to global system mobile communication standard (GSM) during whole-cell recording. The specific absorption rates (SARs) were 2 W/kg for CW and 2 W/kg (time average value) for GSM-modulated signals, respectively. The results obtained indicate that single or multiple acute exposures to either CW or GSM-modulated 900 MHz RF-EMFs do not significantly alter the current amplitude or the current-voltage relationship of I Ba 2+, through VGCC.  相似文献   

4.
Anatomic variability in the deposition of radiofrequency electromagnetic energy in mammals has been well documented. A recent study [D'Andrea et al., 1985] reported specific absorption rate (SAR) hotspots in the brain, rectum and tail of rat carcasses exposed to 360- and to 2,450-MHz microwave radiation. Regions of intense energy absorption are generally thought to be of little consequence when predicting thermal effects of microwave irradiation because it is presumed that heat transfer via the circulatory system promptly redistributes localized heat to equilibrate tissue temperature within the body. Experiments on anesthetized, male Long-Evans rats (200-260 g) irradiated for 10 or 16 min with 2,450, 700, or 360 MHz radiation at SARs of 2 W/kg, 6 W/kg, or 10 W/kg indicated that postirradiation localized temperatures in regions previously shown to exhibit high SARs were appreciably above temperatures at body sites with lower SARs. The postirradiation temperatures in the rectum and tail were significantly higher in rats irradiated at 360 MHz and higher in the tail at 2,450 MHz than temperatures resulting from exposure to 700 MHz. This effect was found for whole-body-averaged SARs as low as 6 W/kg at 360 MHz and 10 W/kg at 2,450 MHz. In contrast, brain temperatures in the anesthetized rats were not different from those measured in the rest of the body following microwave exposure.  相似文献   

5.
A previous study showed a substantial increase in the colonic temperature of rhesus monkeys (Macaca mulatta) exposed to radiofrequency (RF) fields at a frequency near whole-body resonance and specific absorption rates (SAR) of 2-3 W/kg. The present experiments were conducted to determine the metabolic and vasomotor responses during exposures to similar RF fields. We exposed five adult male rhesus monkeys to 225 MHz radiation (E orientation) in an anechoic chamber. Oxygen consumption and carbon dioxide production were measured before, during, and after RF exposure. Colonic, tail and leg skin temperatures were continuously monitored with RF-nonperturbing probes. The monkeys were irradiated at two carefully-controlled ambient temperatures, either cool (20 degrees C) or thermoneutral (26 degrees C). Power densities ranged from 0 (sham) to 10.0 mW/cm2 with an average whole-body SAR of 0.285 (W/kg)/(mW/cm2). We used two experimental protocols, each of which began with a 120-min pre-exposure equilibration period. One protocol involved repetitive 10-min RF exposures at successively higher power densities with a recovery period between exposures. In the second protocol, a 120-min RF exposure permitted the measurement of steady-state thermoregulatory responses. Metabolic and vasomotor adjustments in the rhesus monkey exposed to 225 MHz occurred during brief or sustained exposures at SARs at or above 1.4 W/kg. The SAR required to produce a given response varied with ambient temperature. Metabolic and vasomotor responses were coordinated effectively to produce a stable deep body temperature. The results show that the thermoregulatory response of the rhesus monkey to an RF exposure at a resonant frequency limits storage of heat in the body. However, substantial increases in colonic temperature were not prevented by such responses, even in a cool environment.  相似文献   

6.
This study sought to clarify the effects of exposure to electromagnetic waves (EMW) used in cellular phones on learning and memory processes. Sprague-Dawley rats were exposed for either 1 h daily for 4 days or for 4 weeks to a pulsed 1439 MHz time division multiple access (TDMA) field in a carousel type exposure system. At the brain, average specific absorption rate (SAR) was 7.5 W/kg, and the whole body average SAR was 1.7 W/kg. Other subjects were exposed at the brain average SAR of 25 W/kg and the whole body average SAR of 5.7 W/kg for 45 min daily for 4 days. Learning and memory were evaluated by reversal learning in a food rewarded T-maze, in which rats learned the location of food (right or left) by using environmental cues. The animals exposed to EMW with the brain average SAR of 25 W/kg for 4 days showed statistically significant decreases in the transition in number of correct choices in the reversal task, compared to sham exposed or cage control animals. However, rats exposed to the brain average SAR of 7.5 W/kg for either 4 days or for 4 weeks showed no T-maze performance impairments. Intraperitoneal temperatures, as measured by a fiber optic thermometer, increased in the rats exposed to the brain average SAR of 25 W/kg but remained the same for the brain average SAR of 7.5 W/kg. The SAR of a standard cellular phone is restricted to a maximum of 2 W/kg averaged over 10 g tissue. These results suggest that the exposure to a TDMA field at levels about four times stronger than emitted by cellular phones does not affect the learning and memory processes when there are no thermal effects.  相似文献   

7.
L929 murine fibroblast cells were exposed to radiofrequency (RF) radiation from a time division multiple access wireless phone operating at 835 MHz frequency to determine the effect of RF-radiation energy emitted by wireless phones on ornithine decarboxylase (ODC) activity in cultured cells. Exposure was for 8 h to an average specific absorption rate (SAR) from <1 W/kg up to 15 W/kg. After exposure, cells were harvested and ODC activity was measured. No statistically significant difference in ODC activity was found between RF-radiation-exposed and sham-exposed cells at non-thermal specific absorption rates. At SARs which resulted in measurable heating of the medium, a dose-dependent decrease in enzymatic activity was observed and was shown to be consistent with a comparable decrease caused by non-RF-radiation heating. Thus we observed only the well-known enzyme inhibition due to heating, rather than the previously reported enhancement attributed to RF-radiation exposure.  相似文献   

8.
As part of a comprehensive investigation of the potential genotoxicity of radiofrequency (RF) signals emitted by cellular telephones, in vitro studies evaluated the induction of DNA and chromosomal damage in human blood leukocytes and lymphocytes, respectively. The signals were voice modulated 837 MHz produced by an analog signal generator or by a time division multiple access (TDMA) cellular telephone, 837 MHz generated by a code division multiple access (CDMA) cellular telephone (not voice modulated), and voice modulated 1909.8 MHz generated by a global system of mobile communication (GSM)-type personal communication systems (PCS) cellular telephone. DNA damage (strand breaks/alkali labile sites) was assessed in leukocytes using the alkaline (pH>13) single cell gel electrophoresis (SCG) assay. Chromosomal damage was evaluated in lymphocytes mitogenically stimulated to divide postexposure using the cytochalasin B-binucleate cell micronucleus assay. Cells were exposed at 37+/-1 degrees C, for 3 or 24 h at average specific absorption rates (SARs) of 1.0-10.0 W/kg. Exposure for either 3 or 24 h did not induce a significant increase in DNA damage in leukocytes, nor did exposure for 3 h induce a significant increase in micronucleated cells among lymphocytes. However, exposure to each of the four RF signal technologies for 24 h at an average SAR of 5.0 or 10.0 W/kg resulted in a significant and reproducible increase in the frequency of micronucleated lymphocytes. The magnitude of the response (approximately four fold) was independent of the technology, the presence or absence of voice modulation, and the frequency (837 vs. 1909.8 MHz). This research demonstrates that, under extended exposure conditions, RF signals at an average SAR of at least 5.0 W/kg are capable of inducing chromosomal damage in human lymphocytes.  相似文献   

9.
Since 1994, our research has demonstrated how thermophysiological responses are mobilized in human volunteers exposed to three radio frequencies, 100, 450, and 2450 MHz. A significant gap in this frequency range is now filled by the present study, conducted at 220 MHz. Thermoregulatory responses of heat loss and heat production were measured in six adult volunteers (five males, one female, aged 24-63 years) during 45 min whole body dorsal exposures to 220 MHz radio frequency (RF) energy. Three power densities (PD = 9, 12, and 15 mW/cm(2) [1 mW/cm(2) = 10 W/m(2)], whole body average normalized specific absorption rate [SAR] = 0.045 [W/kg]/[mW/cm(2)] = 0.0045 [W/kg]/[W/m(2)]) were tested at each of three ambient temperatures (T(a) = 24, 28, and 31 degrees C) plus T(a) controls (no RF). Measured responses included esophageal (T(esoph)) and seven skin temperatures (T(sk)), metabolic rate (M), local sweat rate, and local skin blood flow (SkBF). Derived measures included heart rate (HR), respiration rate, and total evaporative water loss (EWL). Finite difference-time domain (FDTD) modeling of a seated 70 kg human exposed to 220 MHz predicted six localized "hot spots" at which local temperatures were also measured. No changes in M occurred under any test condition, while T(esoph) showed small changes (< or =0.35 degrees C) but never exceeded 37.3 degrees C. As with similar exposures at 100 MHz, local T(sk) changed little and modest increases in SkBF were recorded. At 220 MHz, vigorous sweating occurred at PD = 12 and 15 mW/cm(2), with sweating levels higher than those observed for equivalent PD at 100 MHz. Predicted "hot spots" were confirmed by local temperature measurements. The FDTD model showed the local SAR in deep neural tissues that harbor temperature-sensitive neurons (e.g., brainstem, spinal cord) to be greater at 220 than at 100 MHz. Human exposure at both 220 and 100 MHz results in far less skin heating than occurs during exposure at 450 MHz. However, the exposed subjects thermoregulate efficiently because of increased heat loss responses, particularly sweating. It is clear that these responses are controlled by neural signals from thermosensors deep in the brainstem and spinal cord, rather than those in the skin.  相似文献   

10.
To examine the biological effects of radio frequency (RF) electromagnetic fields in vitro, we have examined the fundamental cellular responses, such as cell growth, survival, and cell cycle distribution, following exposure to a wide range of specific absorption rates (SAR). Furthermore, we compared the effects of continuous and intermittent exposure at high SARs. An RF electromagnetic field exposure unit operating at a frequency of 2.45 GHz was used to expose cells to SARs from 0.05 to 1500 W/kg. When cells were exposed to a continuous RF field at SARs from 0.05 to 100 W/kg for 2 h, cellular growth rate, survival, and cell cycle distribution were not affected. At 200 W/kg, the cell growth rate was suppressed and cell survival decreased. When the cells were exposed to an intermittent RF field at 300 W/kg(pk), 900 W/kg(pk) and 1500 W/kg(pk) (100 W/kg(mean)), no significant differences were observed between these conditions and intermittent wave exposure at 100 W/kg. When cells were exposed to a SAR of 50 W/kg for 2 h, the temperature of the medium around cells rose to 39.1 degrees C, 100 W/kg exposure increased the temperature to 41.0 degrees C, and 200 W/kg exposure increased the temperature to 44.1 degrees C. Exposure to RF radiation results in heating of the medium, and the thermal effect depends on the mean SAR. Hence, these results suggest that the proliferation disorder is caused by the thermal effect.  相似文献   

11.
In this study, we investigated whether exposure to 2450 MHz high-frequency electromagnetic fields (HFEMFs) could act as an environmental insult to evoke a stress response in A172 cells, using HSP70 and HSP27 as stress markers. The cells were exposed to a 2450 MHz HFEMF with a wide range of specific absorption rates (SARs: 5-200 W/kg) or sham conditions. Because exposure to 2450 MHz HFEMF at 50-200 W/kg SAR causes temperature increases in culture medium, appropriate heat control groups (38-44 degrees C) were also included. The expression of HSP 70 and HSP 27, as well as the level of phosphorylated HSP 27 ((78)Ser) (p-HSP27), was determined by Western blotting. Our results showed that the expression of HSP 70 increased in a time and dose-dependent manner at >50 W/kg SAR for 1-3 h. A similar effect was also observed in corresponding heat controls. There was no significant change in HSP 27 expression caused by HFEMF at 5-200 W/kg or by comparable heating for 1-3 h. However, HSP 27 phosphorylation increased transiently at 100 and 200 W/kg to a greater extent than at 40-44 degrees C. Phosphorylation of HSP 27 reached a maximum after 1 h exposure at 100 W/kg HFEMF. Our results suggest that exposure to a 2450 MHz HFEMF has little or no apparent effect on HSP70 and HSP27 expression, but it may induce a transient increase in HSP27 Phosphorylation in A172 cells at very high SAR (>100 W/kg).  相似文献   

12.
To investigate the induction of chromosomal aberrations in mouse m5S cells after exposure to high-frequency electromagnetic fields (HFEMFs) at 2.45 GHz, cells were exposed for 2 h at average specific absorption rates (SARs) of 5, 10, 20, 50 and 100 W/kg with continuous wave-form (CW), or at a mean SAR of 100 W/kg (with a maximum of 900 W/kg) with pulse wave-form (PW). The effects of HFEMF exposure were compared with those in sham-exposed controls and with mitomycin C (MMC) or X-ray treatment as positive controls. We examined all structural, chromatid-type and chromosome-type changes after HFEMF exposures and treatments with MMC and X-rays. No significant differences were observed following exposure to HFEMFs at SARs from 5 to 100 W/kg CW and at a mean SAR of 100 W/kg PW (a maximum SAR of 900 W/kg) compared with sham-exposed controls, whereas treatments with MMC and X-rays increased the frequency of chromatid-type and chromosome-type aberrations. In summary, HFEMF exposures at 2.45 GHz for 2 h with up to 100 W/kg SAR CW and an average 100 W/kg PW (a maximum SAR of 900 W/kg) do not induce chromosomal aberrations in m5S cells. Furthermore, there was no difference between exposures to CW and PW HFEMFs.  相似文献   

13.
To compare the effects of exposure to a near-resonant frequency of microwaves at two orientations with a higher frequency exposure, five rhesus monkeys were exposed for 4 hr to 225 MHz, electric field oriented parallel to the long axis of the body (225 MHz-E), and to 225 MHz, magnetic field orientation (225 MHz-H), or to 1290 MHz, electric field orientation. On a separate occasion, the monkeys were exposed at night to 225 MHz-E. Exposures were conducted with the animal chair restrained in an anechoic chamber with rectal temperature continuously monitored. Blood samples were taken hourly during the 225-MHz-E exposures for cortisol analysis. The power densities used were 0, 1.2, 2.5, 5.0, 7.5, 10.0, and 15.0 mW/cm2 for 225 MHz-E (day), 0 and 5 mW/cm2 (225 MHz-E night and 225 MHz-H), and 0, 20, 28, and 38 mW/cm2 (1290 MHz). The monkeys were unable to tolerate exposure at power densities equal to or greater than 7.5 mW/cm2 (5.1 W/kg) at 225 MHz-E for longer than 90 min. The criterion for tolerance was that the rectal temperature would not exceed 41.5 degrees C. Average rectal temperature increases for day exposure to 225 MHz-E were 0.4 and 1.7 degrees C for 4-hr exposures to 2.5 and 5.0 mW/cm2 (1.7 and 3.4 W/kg). No changes in circulating cortisol levels occurred during any exposures to 5 mW/cm2 or less. Night exposures to 5 mW/cm2 (3.4 W/kg) at 225 MHz-E raised mean rectal temperature 2.1 degrees C. Exposure to 5 mW/cm2 (1.2 W/kg) at 225 MHz-H for 4 hr resulted in a 0.2 degree rise in mean rectal temperature. For 4 hr of 1290-MHz exposure to 20, 28, or 38 mW/cm2 (2.9, 4.0, and 5.4 W/kg), the mean body temperature increases were 0.4, 0.7, and 1.3 degrees C, respectively. The degree of hyperthermia caused by radiofrequency (rf) exposure was shown to be frequency and orientation dependent for equivalent power densities of exposure.  相似文献   

14.
Effect of electromagnetic radiation 460 MHz with 2.5-40 Hz pulse modulation rate on Drosophila embryos of 15 h 10 m age was studied. It was demonstrated that a 5-min irradiation with 0.12 W/kg average SAR (3 W/kg pulsed SAR) alters the Drosophila percentage of interrupted development. The effect strength depended on the modulation rate with a pronounced decrease at 10 and 16 Hz. A hypothesis about the presence of thermal and non-thermal mechanisms of action of pulse-modulated microwave radiation diversely effecting the embryos has been put forward and grounded.  相似文献   

15.
The aim of this study was to evaluate and compare the influence of 864 MHz and 935 MHz radiofrequency/microwave (RF/MW) fields on the growth, colony-forming ability, and viability of V79 cells (continuous line). Cell samples with 1 x 10(4) V79 cells each, were exposed to continuous wave frequencies of 864 MHz and 935 MHz for 1, 2 and 3 hours. Exposed samples were matched with unexposed control samples. Specific absorption rate (SAR) was 0.08 W/kg for the 864 MHz or 0.12 W/kg for the 935 MHz field. Cell growth and viability were determined by counting cells every day for five days after exposure. Colony-forming ability was assessed by counting colonies seven days after exposure. The growth of the 864 MHz-irradiated cells was significant after two- and three-hour exposure 72 hours after irradiation (p < 0.05). The similar was observed 72 hours after exposure for cells exposed to 935 MHz microwaves for three hours (p <0.05). Colony-forming ability and cell viability in V79 cells exposed to 864 MHz or 935 MHz microwaves did not significantly differ from control cells. The two applied RF/MW fields showed similar effects on the growth, colony-forming ability and viability of V79 cells. Cell growth impact was time-dependent for both fields.  相似文献   

16.
We examined the histological changes by radiofrequency (RF) fields on rat testis, specifically with respect to sensitive processes such as spermatogenesis. Male rats were exposed to 848.5 MHz RF for 12 weeks. The RF exposure schedule consisted of two 45‐min RF exposure periods, separated by a 15‐min interval. The whole‐body average specific absorption rate (SAR) of RF was 2.0 W/kg. We then investigated correlates of testicular function such as sperm counts in the cauda epididymis, malondialdehyde concentrations in the testes and epididymis, frequency of spermatogenesis stages, germ cell counts, and appearance of apoptotic cells in the testes. We also performed p53, bcl‐2, caspase 3, p21, and PARP immunoblotting of the testes in sham‐ and RF‐exposed animals. Based on these results, we concluded that subchronic exposure to 848.5 MHz with 2.0 W/kg SAR RF did not have any observable adverse effects on rat spermatogenesis. Bioelectromagnetics 31:528–534, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Ubiquitous and ever increasing use of mobile phones led to the growing concern about the effects of radiofrequency radiation (RFR) emitted by cell phones on biological systems. The aim of this study is to explore whether long-term RFR exposure at different frequencies affects DNA damage and oxidant-antioxidant parameters in the blood and brain tissue of rats. 28 male Sprague Dawley rats were randomly divided into four equal groups (n = 7). They were identified as Group 1: sham-control, Group 2: 900 MHz, Group 3: 1800 MHz, and Group 4: 2100 MHz. Experimental groups of rats were exposed to RFR 2 h/day for 6 months. The sham-control group of rats was subjected to the same experimental condition but generator was turned off. Specific absorption rates (SARs) at brain with 1 g average were calculated as 0.0845 W/kg, 0.04563 W/kg, and 0.03957, at 900 MHz, 1800 MHz, and 2100 MHz, respectively. Additionally, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), total antioxidant status (TAS), and total oxidant status (TOS) analyses were conducted in the brain tissue samples. Results of the study showed that DNA damage and oxidative stress indicators were found higher in the RFR exposure groups than in the sham-control group. In conclusion, 900-, 1800-, and 2100-MHz RFR emitted from mobile phones may cause oxidative damage, induce increase in lipid peroxidation, and increase oxidative DNA damage formation in the frontal lobe of the rat brain tissues. Furthermore, 2100-MHz RFR may cause formation of DNA single-strand breaks.  相似文献   

18.
Radiofrequency radiation (RFR) causes heating, which can lead to detrimental biological effects. To characterize the effects of RFR exposure on body temperature in relation to animal size and pregnancy, a series of short‐term toxicity studies was conducted in a unique RFR exposure system. Young and old B6C3F1 mice and young, old, and pregnant Harlan Sprague‐Dawley rats were exposed to Global System for Mobile Communication (GSM) or Code Division Multiple Access (CDMA) RFR (rats = 900 MHz, mice = 1,900 MHz) at specific absorption rates (SARs) up to 12 W/kg for approximately 9 h a day for 5 days. In general, fewer and less severe increases in body temperature were observed in young than in older rats. SAR‐dependent increases in subcutaneous body temperatures were observed at exposures ≥6 W/kg in both modulations. Exposures of ≥10 W/kg GSM or CDMA RFR induced excessive increases in body temperature, leading to mortality. There was also a significant increase in the number of resorptions in pregnant rats at 12 W/kg GSM RFR. In mice, only sporadic increases in body temperature were observed regardless of sex or age when exposed to GSM or CDMA RFR up to 12 W/kg. These results identified SARs at which measurable RFR‐mediated thermal effects occur, and were used in the selection of exposures for subsequent toxicology and carcinogenicity studies. Bioelectromagnetics. 39:190–199, 2018. © 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.  相似文献   

19.
The rapid rise in the use of mobile communications has raised concerns about health issues related to low-level microwave radiation. The head and brain are usually the most exposed targets in mobile phone users. In the brain, two types of glial cells, the astroglial and the microglial cells, are interesting in the context of biological effects from microwave exposure. These cells are widely distributed in the brain and are directly involved in the response to brain damage as well as in the development of brain cancer. The aim of the present study was to investigate whether 900 MHz radiation could affect these two different glial cell types in culture by studying markers for damage-related processes in the cells. Primary cultures enriched in astroglial cells were exposed to 900 MHz microwave radiation in a temperature-controlled exposure system at specific absorption rates (SARs) of 3 W/kg GSM modulated wave (mw) for 4, 8 and 24 h or 27 W/kg continuous wave (cw) for 24 h, and the release into the extracellular medium of the two pro-inflammatory cytokines interleukin 6 (Il6) and tumor necrosis factor-alpha (Tnfa) was analyzed. In addition, levels of the astroglial cell-specific reactive marker glial fibrillary acidic protein (Gfap), whose expression dynamics is different from that of cytokines, were measured in astroglial cultures and in astroglial cell-conditioned cell culture medium at SARs of 27 and 54 W/kg (cw) for 4 or 24 h. No significant differences could be detected for any of the parameters studied at any time and for any of the radiation characteristics. Total protein levels remained constant during the experiments. Microglial cell cultures were exposed to 900 MHz radiation at an SAR of 3 W/kg (mw) for 8 h, and I16, Tnfa, total protein and the microglial reactivity marker ED-1 (a macrophage activation antigen) were measured. No significant differences were found. The morphology of the cultured astroglial cells and microglia was studied and appeared to be unaffected by microwave irradiation. Thus this study does not provide evidence for any effect of the microwave radiation used on damage-related factors in glial cells in culture.  相似文献   

20.
Ketamine-anesthetized Sprague-Dawley rats were exposed to far-field 1200-MHz continuous wave radiofrequency radiation in both E and H orientations (long axis of animal parallel to electric or magnetic field, respectively). Power densities were used that resulted in equivalent whole-body specific absorption rates of approximately 8 W/kg in both orientations (20 mW/cm2 for E and 45 mW/cm2 for H). Exposure was conducted to repeatedly increase colonic temperature from 38.5 to 39.5 degrees C in both orientations in the same animal. Irradiation in E orientation resulted in greater colonic, tympanic, left subcutaneous (side toward antenna), and tail heating. The results indicated a more uniform distribution of heat than that which occurred in previous experiments of 2450-MHz irradiation in E and H orientation. A lack of significant differences in blood pressure and heart rate responses between exposures in the two orientations in this study suggest that greater peripheral heating, as was seen in the earlier study of 2450 MHz, is necessary for these differences to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号