首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The radiofrequency absorption rates of five male human volunteers have been measured from 3 to 41 MHz. The subjects were exposed at about 10 microW /cm2 inside a very large transverse electromagnetic (TEM) cell and never absorbed more than 1 W. Both the EKH and EHK orientations were employed under both free-space and grounded conditions. Absorption rates for the EKH orientation exceed those of the EHK orientation by 40% in free space, but only by 6% when grounded. The absorption rates for the grounded men vary with frequency, f, as f1.9 from 3 to 25 MHz and then level off at peak. The free-space absorption rates vary as f1.7 from 3 to 18 MHz and as f2.9 from 18 to 41 MHz. The average measured absorption rates at 10 MHz exceed the average of the standard model calculations by a factor of three (for free space) or four (grounded). The average man, when exposed grounded in an EKH orientation to the maximum permitted exposure levels under ANSI standard C95 .1-1982, will absorb 0.58 +/- 0.14 W/kg over most of the 3 to 41-MHz frequency range. This slightly exceeds the whole-body maximum of 0.40 W/kg underlying the standard.  相似文献   

2.
These experiments were designed to investigate the effects of sub-resonant microwave (MW) exposure (350 MHz, E orientation, average power density 38 mW/cm2, average whole-body specific absorption rate 13.2 W/kg) on selected physiological parameters. The increase in peripheral body temperature during 350 MHz exposure was greater than that in earlier experiments performed at 700 MHz (resonance). Heart rate and mean arterial blood pressure were significantly elevated during a 1 °C increase in colonic temperature due to 350 MHz exposure; respiratory rate showed no significant change. The results are consistent with other investigators' reports comparing sub-resonance exposures with those at resonance and above. Bioelectromagnetics 18:335–338, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Experiments were conducted using twin-well calorimetry to determine the averaged whole-body specific absorption rate (SAR) for rat carcasses exposed to 360, 700, 915, and 2,450 MHz CW radiation in an anechoic chamber. All exposures were done with the long axis of the rat in an E-polarization. Additional experiments were conducted using a fiber optical temperature probe to determine local SAR in the brain, esophagus, colon, rectum, and tail during microwave exposure. The whole-body averaged SAR for the radiation frequencies examined follows a nonmonotonic function with 700 MHz as the resonant frequency. This result agrees with previous analytical estimates. Local SARs within the body and tail are nonuniform with significant frequency-specific hotspots in the colon, rectum, and tail.  相似文献   

4.
Full-size models of a man and a rhesus monkey were exposed to radiofrequency (RF) radiation at 225 MHz. The model of man was also exposed to 2,000 MHz. Specific absorption rates (SARs) were measured in partial-body sections, such as the arms, legs, etc., using gradient-layer calorimeters. Also, front-surface thermographic images were obtained to qualitatively show the heating patterns. For all of the configurations used, the SAR in the limbs was much higher than in the torso. Agreement (whole-body SARs) with spheroidal models was better for both models at 225 MHz than at 2,000 MHz. These results indicate that in the frequency range two orders of magnitude above whole-body resonance, SAR in the limbs significantly contributes to the whole-body average SAR.  相似文献   

5.
A previous study showed a substantial increase in the colonic temperature of rhesus monkeys (Macaca mulatta) exposed to radiofrequency (RF) fields at a frequency near whole-body resonance and specific absorption rates (SAR) of 2-3 W/kg. The present experiments were conducted to determine the metabolic and vasomotor responses during exposures to similar RF fields. We exposed five adult male rhesus monkeys to 225 MHz radiation (E orientation) in an anechoic chamber. Oxygen consumption and carbon dioxide production were measured before, during, and after RF exposure. Colonic, tail and leg skin temperatures were continuously monitored with RF-nonperturbing probes. The monkeys were irradiated at two carefully-controlled ambient temperatures, either cool (20 degrees C) or thermoneutral (26 degrees C). Power densities ranged from 0 (sham) to 10.0 mW/cm2 with an average whole-body SAR of 0.285 (W/kg)/(mW/cm2). We used two experimental protocols, each of which began with a 120-min pre-exposure equilibration period. One protocol involved repetitive 10-min RF exposures at successively higher power densities with a recovery period between exposures. In the second protocol, a 120-min RF exposure permitted the measurement of steady-state thermoregulatory responses. Metabolic and vasomotor adjustments in the rhesus monkey exposed to 225 MHz occurred during brief or sustained exposures at SARs at or above 1.4 W/kg. The SAR required to produce a given response varied with ambient temperature. Metabolic and vasomotor responses were coordinated effectively to produce a stable deep body temperature. The results show that the thermoregulatory response of the rhesus monkey to an RF exposure at a resonant frequency limits storage of heat in the body. However, substantial increases in colonic temperature were not prevented by such responses, even in a cool environment.  相似文献   

6.
Ketamine-anesthetized Sprague-Dawley rats were exposed to far-field 700-MHz continuous-wave radiofrequency radiation (RFR) in both E and H orientations. Irradiation was conducted at whole-body average specific absorption rates (SARs) of 9.2 and 13.0 W/kg (E and H, respectively) that resulted in approximately equivalent colonic specific heating rates (SHRs). Exposures were performed to repeatedly increase colonic temperature by 1 degree C (38.5 to 39.5 degrees C). Tympanic, tail, left and right subcutaneous (toward and away from RFR source), and colonic temperatures, arterial blood pressure, and respiratory rate were continuously recorded. In spite of equivalent colonic SHRs and the reduced E-orientation average SAR, the right subcutaneous, tympanic, and tail SARs, SHRs and absolute temperature increases were significantly greater in E than in H orientation. The cooling rate at all monitoring sites was also significantly greater in E than in H orientation. Heart rate and mean arterial blood pressure significantly increased during irradiation; however, changes between orientations were not different. Respiratory rate significantly increased during irradiation in H, but not in E orientation. These results indicate that during resonant frequency irradiation, differences occur in the pattern of heat deposition between E- and H-orientation exposure. When compared with previous investigations performed at supraresonant frequencies, the lower level of cardiovascular change in this study was probably related to the lower periphery-to-core thermal gradient.  相似文献   

7.
Relatively large thermal gradients may exist during exposure of an animal to microwaves (MWs), particularly at high frequencies. Differences in thermal gradients within the body may lead to noticeable differences in the magnitude of cardiovascular changes resulting from MW exposure. This study compares the thermal distribution and cardiovascular effects of exposure to a single MW frequency with effects of simultaneous exposure to two frequencies. Ketamine-anesthetized male Sprague-Dawley rats (n = 58) were exposed individually to one of three conditions: 1-GHz, 10-GHz, or combined 1- and 10-GHz MWs at an equivalent whole-body specific absorption rate of 12 W/kg. The continuous-wave irradiation was conducted under far-field conditions with animals in E orientation (left lateral exposure, long axis parallel to the electric field) or in H orientation (left lateral exposure, long axis perpendicular to the electric field). Irradiation was started when colonic temperature was 37.5 degrees C and was continued until lethal temperatures were attained. Colonic, tympanic, left and right subcutaneous, and tail temperatures, and arterial blood pressure, heart rate, and respiratory rate were continuously recorded. In both E and H orientations, survival time (i.e., time from colonic temperature of 37.5 degrees C until death) was lowest in animals exposed at 1-GHz, intermediate in those exposed at 1- and 10-GHz combined, and greatest in the 10-GHz group (most differences statistically significant). At all sites (with the exception of right subcutaneous), temperature values in the 1- and 10-GHz combined group were between those of the single-frequency exposure groups in both E and H orientations. During irradiation, arterial blood pressure initially increased and then decreased until death. Heart rate increased throughout the exposure period. The general, overall patterns of these changes were similar in all groups. The results indicate that no unusual physiological responses occur during multi-frequency MW exposure, when compared with results of single-frequency exposure. Bioelectromagnetics 21:159-166, 2000. Published 2000 Wiley-Liss, Inc.  相似文献   

8.
This study reports the dosimetry performed to support an experiment that measured physiological responses of volunteer human subjects exposed to the resonant frequency for a seated human adult at 100 MHz. Exposures were performed in an anechoic chamber which was designed to provide uniform fields for frequencies of 100 MHz or greater. A half wave dipole with a 90 degrees reflector was used to optimize the field at the subject location. The dosimetry plan required measurement of transmitter harmonics, stationary probe drift, field strengths as a function of distance, electric and magnetic field maps at 200, 225, and 250 cm from the dipole antenna, and specific absorption rate (SAR) measurements using a human phantom, as well as theoretical predictions of SAR with the finite difference time domain (FDTD) method. On each exposure test day, a measurement was taken at 225 cm on the beam centerline with a NBS E field probe to assure consistently precise exposures. A NBS 10 cm loop antenna was positioned 150 cm to the right, 100 cm above, and 60 cm behind the subject and was read at 5 min intervals during all RF exposures. These dosimetry measurements assured accurate and consistent exposures. FDTD calculations were used to determine SAR distribution in a seated human subject. This study reports the necessary dosimetry for work on physiological consequences of human volunteer exposures to 100 MHz.  相似文献   

9.
Thermoregulatory responses of heat production and heat loss were measured in two different groups of seven adult volunteers (males and females) during 45‐min dorsal exposures of the whole body to 450 or 2450 MHz continuous‐wave radio frequency (RF) fields. At each frequency, two power densities (PD) were tested at each of three ambient temperatures (Ta = 24, 28, and 31 °C) plus Ta controls (no RF). The normalized peak surface specific absorption rate (SAR), measured at the location of the subject's center back, was the same for comparable PD at both frequencies, i.e., peak surface SAR = 6.0 and 7.7 W/kg. No change in metabolic heat production occurred under any exposure conditions at either frequency. The magnitude of increase in those skin temperatures under direct irradiation was directly related to frequency, but local sweating rates on back and chest were related more to Ta and SAR. Both efficient sweating and increased local skin blood flow contributed to the regulation of the deep body (esophageal) temperature to within 0.1 °C of the baseline level. At both frequencies, normalized peak SARs in excess of ANSI/IEEE C95.1 guidelines were easily counteracted by normal thermophysiological mechanisms. The observed frequency‐related response differences agree with classical data concerning the control of heat loss mechanisms in human beings. However, more practical dosimetry than is currently available will be necessary to evaluate realistic human exposures to RF energy in the natural environment. Bioelectromagnetics 20:12–20, 1999. Published 1999 Wiley‐Liss, Inc.  相似文献   

10.
Six male New Zealand white rabbits were individually exposed to 600 MHz radiofrequency (RF) radiation for 90 min in a waveguide exposure system at an ambient temperature (Ta) of 20 or 30 degrees C. Immediately after exposure, the rabbit was removed from the exposure chamber and its colonic and ear skin temperatures were quickly measured. The whole-body specific absorption rate (SAR) required to increase colonic and ear skin temperature was determined. At a Ta of 20 degrees C the threshold SAR for elevating colonic and ear skin temperature was 0.64 and 0.26 W/kg, respectively. At a Ta of 30 degrees C the threshold SARs were slightly less than at 20 degrees C, with values of 0.26 W/kg for elevating colonic temperature and 0.19 W/kg for elevating ear skin temperature. The relationship between heat load and elevation in deep body temperature shown in this study at 600 MHz is similar to past studies which employed much higher frequencies of RF radiation (2450-2884 MHz). On the other hand, comparison of these data with studies on exercise-induced heat production and thermoregulation in the rabbit suggest that the relationship between heat gain and elevation in body temperature in exercise and from exposure to RF radiation may differ considerably. When combined with other studies, it was shown that the logarithm of the SAR required for a 1.0 degree C elevation in deep body temperature of the rabbit, rat, hamster, and mouse was inversely related to the logarithm of body mass. The results of this study are consistent with the conclusion that body mass strongly influences thermoregulatory sensitivity of the aforementioned laboratory mammals during exposure to RF radiation.  相似文献   

11.
This study investigates occupational exposure to electromagnetic fields in front of a multi‐band base station antenna for mobile communications at 900, 1800, and 2100 MHz. Finite‐difference time‐domain method was used to first validate the antenna model against measurement results published in the literature and then investigate the specific absorption rate (SAR) in two heterogeneous, anatomically correct human models (Virtual Family male and female) at distances from 10 to 1000 mm. Special attention was given to simultaneous exposure to fields of three different frequencies, their interaction and the additivity of SAR resulting from each frequency. The results show that the highest frequency—2100 MHz—results in the highest spatial‐peak SAR averaged over 10 g of tissue, while the whole‐body SAR is similar at all three frequencies. At distances >200 mm from the antenna, the whole‐body SAR is a more limiting factor for compliance to exposure guidelines, while at shorter distances the spatial‐peak SAR may be more limiting. For the evaluation of combined exposure, a simple summation of spatial‐peak SAR maxima at each frequency gives a good estimation for combined exposure, which was also found to depend on the distribution of transmitting power between the different frequency bands. Bioelectromagnetics 32:234–242, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Many types of invisible electromagnetic waves are produced in our atmosphere. When these radiations penetrate our body, electric fields are induced inside the body, resulting in the absorption of power, which is different for different body parts and also depends on the frequency of radiations. Higher power absorption may result into health problems. In this communication, effects of electromagnetic waves (EMW) of 41 and 202 MHz frequencies transmitted by the TV tower have been studied on skin, muscles, bone and fat of human. Using international standards for safe exposure limits of specific absorption rate (SAR), we have found the safe distance from TV transmission towers for two frequencies. It is suggested that transmission towers should be located away from the thickly populated areas and people should keep away from the transmission towers, as they radiate electromagnetic radiations that are harmful to some parts/tissues of body.  相似文献   

13.
Ketamine-anesthetized Sprague-Dawley rats were exposed to far-field 1200-MHz continuous wave radiofrequency radiation in both E and H orientations (long axis of animal parallel to electric or magnetic field, respectively). Power densities were used that resulted in equivalent whole-body specific absorption rates of approximately 8 W/kg in both orientations (20 mW/cm2 for E and 45 mW/cm2 for H). Exposure was conducted to repeatedly increase colonic temperature from 38.5 to 39.5 degrees C in both orientations in the same animal. Irradiation in E orientation resulted in greater colonic, tympanic, left subcutaneous (side toward antenna), and tail heating. The results indicated a more uniform distribution of heat than that which occurred in previous experiments of 2450-MHz irradiation in E and H orientation. A lack of significant differences in blood pressure and heart rate responses between exposures in the two orientations in this study suggest that greater peripheral heating, as was seen in the earlier study of 2450 MHz, is necessary for these differences to occur.  相似文献   

14.
The aim of this project was to develop an animal exposure system for the biological effect studies of radio frequency fields from handheld wireless telephones, with energy deposition in animal brains comparable to those in humans. The finite‐difference time‐domain (FDTD) method was initially used to compute specific absorption rate (SAR) in an ellipsoidal rat model exposed with various size loop antennas at different distances from the model. A 3 × 1 cm rectangular loop produced acceptable SAR patterns. A numerical rat model based on CT images was developed by curve‐fitting Hounsfield Units of CT image pixels to tissue dielectric properties and densities. To design a loop for operating at high power levels, energy coupling and impedance matching were optimized using capacitively coupled feed lines embedded in a Teflon rod. Sprague Dawley rats were exposed with the 3 × 1 cm loop antennas, tuned to 837 or 1957 MHz for thermographically determined SAR distributions. Point SARs in brains of restrained rats were also determined thermometrically using fiberoptic probes. Calculated and measured SAR patterns and results from the various exposure configurations are in general agreement. The FDTD computed average brain SAR and ratio of head to whole body absorption were 23.8 W/kg/W and 62% at 837 MHz, and 22.6 W/kg/W and 89% at 1957 MHz. The average brain to whole body SAR ratio was 20 to 1 for both frequencies. At 837 MHz, the maximum measured SAR in the restrained rat brains was 51 W/kg/W in the cerebellum and 40 W/kg/W at the top of the cerebrum. An exposure system operating at 837 MHz is ready for in vivo biological effect studies of radio frequency fields from portable cellular telephones. Two‐tenths of a watt input power to the loop antenna will produce 10 W/kg maximum SAR, and an estimated 4.8 W/kg average brain SAR in a 300 g medium size rat. Bioelectromagnetics 20:75–92, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
Summary Ketamine-anesthetized Sprague-Dawley rats were exposed in both E and H orientations to far-field 2.45-GHz continuous-wave radiofrequency radiation (RFR) at a power density of 60 mW/cm2 (whole-body average specific absorption rate of 14 W/kg). Intermittent exposures were performed in both orientations in the same animal to repeatedly increase colonic temperature from 38.5 to 39.5° C. Tympanic, subcutaneous (sides toward and away from RFR source), and colonic temperature, ECG, arterial blood pressure, and respiratory rate were continuously recorded. The pattern of heat distribution within the animal and the physiological responses were significantly different between E-and H-orientation exposure. Irradiation in E orientation resulted in greater peripheral and tympanic heating, while irradiation in H orientation resulted in greater core heating. Heart rate and blood pressure increased significantly during irradiation and returned to baseline levels when exposure was discontinued; the increases were significantly greater in E than in H orientation. Respiratory rate increased significantly during irradiation in H, but not in E orientation. The physiological responses could have been influenced by the different levels or rates of subcutaneous and tympanic heating, or the differential between core and peripheral heating during E- and H-orientation irradiation. These results suggest that, when interpreting results of RFR exposure, animal orientation during irradiation must be considered.  相似文献   

16.
Continuous flow filtration of suspensions of eukaryotic cells by ultrasonic standing wave enhanced sedimentation has recently been reported. The filtration efficiency for Escherichia coli in such a filter has been characterized at frequencies of 1 and 3 MHz in the present work and compared with results for Saccharomyces cerevisiae. The yeast can be filtered at greater than 99% efficiency at a flow rate of 5 ml min-1 at either frequency. The filtration efficiency of the smaller E. coli at 3 MHz is in excess of 80% at concentrations in the region of 1010 mI-1 but decreased at lower concentrations. However, E. coli in a mixed suspension with yeast were, because of inter-particle interactions, removed with the filtrate at an efficiency ranging from 80 to 50% over the eight orders of bacterial concentrations tested (down to 103 mI-1) at 3 MHz. Quantitative considerations show that poor filtration of pure suspensions of the smaller cells at the lower frequency arises because, at reasonable flow rates, the residence time is not sufficient for the cells to reach the pressure nodal cell concentration regions. The filtration efficiencies of both cell types are comparable at 3 MHz. It is suggested that the more comparable efficiencies arise because concentration regions are narrower at the high frequency and Stokes drag by the filter bulk flow inhibits sedimentation of the concentrated cells.  相似文献   

17.
Because exposure to microwave fields at the resonant frequency may generate heat deep in the body, hyperthermia may result. This problem has been examined in an animal model to determine both the thresholds for response change and the steady-state thermoregulatory compensation for body heating during exposure at resonant (450 MHz) and supra-resonant (2,450 MHz) frequencies. Adult male squirrel monkeys, held in the far field of an antenna within an anechoic chamber, were exposed (10 min or 90 min) to either 450-MHz or 2,450-MHz CW fields (E polarization) in cool environments. Whole-body SARs ranged from 0-6 W/kg (450 MHz) and 0-9 W/kg (2,450 MHz). Colonic and several skin temperatures, metabolic heat production, and evaporative heat loss were monitored continuously. During brief RF exposures in the cold, the reduction of metabolic heat production was directly proportional to the SAR, but 2,450-MHz energy was a more efficient stimulus than was the resonant frequency. In the steady state, a regulated increase in deep body temperature accompanied exposure at resonance, not unlike that which occurs during exercise. Detailed analyses of the data indicate that temperature changes in the skin are the primary source of the neural signal for a change in physiological interaction processes during RF exposure in the cold.  相似文献   

18.
Electromagnetic (EM) absorption of the human body for far-field exposure at the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference level has two peaks in the resonance frequency and GHz regions. Dominant factors influencing whole-body average specific absorption rate (SAR) in these two frequency regions have not yet been revealed sufficiently. The main purpose of this study is to clarify the dominant factors influencing EM power absorption in terms of whole-body average SAR in an anatomically based model compared with those in a homogeneous anthropomorphic model and corresponding cuboid models. Computational results show that EM absorption peak in the resonance frequency region greatly depends on the electric properties of tissue, while the peak in the GHz region is affected mainly by the surface area of the model.  相似文献   

19.
The aim of this study was to determine whether the exposure to either single or multiple radio‐frequency (RF) radiation frequencies could induce oxidative stress in cell cultures. Exposures of human MCF10A mammary epithelial cells to either a single frequency (837 MHz alone or 1950 MHz alone) or multiple frequencies (837 and 1950 MHz) were conducted at specific absorption rate (SAR) values of 4 W/kg for 2 h. During the exposure period, the temperature in the exposure chamber was maintained isothermally. Intracellular levels of reactive oxygen species (ROS), the antioxidant enzyme activity of superoxide dismutase (SOD), and the ratio of reduced/oxidized glutathione (GSH/GSSG) showed no statistically significant alterations as the result of either single or multiple RF radiation exposures. In contrast, ionizing radiation‐exposed cells, used as a positive control, showed evident changes in all measured biological endpoints. These results indicate that single or multiple RF radiation exposure did not elicit oxidative stress in MCF10A cells under our exposure conditions. Bioelectromagnetics 33:604–611, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
We developed whole-body exposure systems for in-vivo study at cellular (848.5 MHz) and Personal Communication System (PCS, 1,762.5 MHz) frequency, utilizing reverberation chamber. The field uniformities in the test area of the designed chambers were verified by simulation and measurement. In the whole-body exposure environment, Specific Absorption Rate (SAR) distributions inside of mice were calculated using Finite Difference Time Domain (FDTD) simulation. Key results are presented in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号