首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
Twenty-four male albino rats were given daily intraperitoneal injections of vasoactive intestinal polypeptide (VIP), motilin, human gastrin I (1–17) or the diluent control vehicle at a dose of 100 μg/kg for four consecutive days and food intake, water intake, body weight, and running wheel activity were determined every 24 hours. Animals injected with motilin or human gastrin I (1–17) exhibited decreased food intake relative to those injected with VIP or diluent, which did not differ from each other, although food intake increased reliably over days. The mean water consumption followed the same pattern as that of food intake. As expected from the above results, VIP produced weight gains as compared with rats injected with motilin or gastrin but not reliably more than after diluent. A reliable effect of trials for weight gain was the greatest on day three. Running wheel activity was not affected by injections of human gastrin I (1–17), motilin, or diluent but was reliably decreased by VIP. No significant differences existed across days. Although the results indicate that GI peptides may affect behavior when injected systemically and that like other peptides they have multiple effects, caution is urged in the interpretation of behavioral results at this time.  相似文献   

2.
Cholecystokinin, bombesin or gastrin (2 microliter of 50 ng/microliter) was injected stereotaxically into the paraventricular nucleus of the hypothalamus, the arcuate/ventromedial area, the subfornical organ, the area postrema and the cerebral aqueduct of Sprague-Dawley rats and the effects of these injections on food and water intake were studied. While the injection of cholecystokinin reduced food intake when it was injected into both hypothalamic loci, food and water intake were most severely affected by the injection of this peptide into the cerebral aqueduct. Bombesin reduced food intake after its injection into all areas except the subfornical organ and reliable reductions in water intake were seen after injection of this peptide into all areas except the paraventricular nucleus. Minor reductions in food intake were seen following gastrin injection into the paraventricular nucleus while increased water consumption was observed after this peptide was injected into the paraventricular nucleus and cerebral aqueduct. In a second study 6-hydroxydopamine injections (2 microliter of 8 micrograms/microliter were made into the five areas studied 10 days before animals were injected with 100 micrograms/kg of cholecystokinin (i.p.). All 6-hydroxydopamine-injected animals reduced their food and water intake in response to the cholecystokinin challenge as did intact controls. These results indicate that while the changes in food and water intake produced by the central injection of cholecystokinin, bombesin or gastrin may involve central catecholamine systems, those occurring after its systemic administration do not. Therefore, if the release of gastrointestinal peptides during natural feeding is part of a homeostatic mechanism regulating hunger and satiety, this mechanism may operate without directly involving central catecholamine systems.  相似文献   

3.
摘要 目的:探讨针刺三里穴、中脘对大鼠胃大部切除术后胃肠传输功能恢复的影响及可能的作用机制。方法:将60只 SD 大鼠随机分为空白组、模型组和针刺组,每组 20 只。造模成功后第3天开始,针刺组进行针刺足三里、中脘,连续治疗14天。于末次针刺结束后,各组记录进食量、体重等;后各组禁食24 h后进行胃残留率和小肠推进率测定,腹主动脉取血测定胃泌素、胃动素、食欲素A及食欲素1型受体。结果:造模前,三组大鼠体重和进食量差异无统计学意义,P>0.05。造模后3天,模型组及针刺组体重和进食量低于空白组,差异有统计学意义,P<0.05。针刺干预后,模型组体重和进食量低于空白组和针刺组,差异有统计学意义,P<0.05。针刺干预后,针刺组大鼠胃残留率、小肠推进率、胃泌素、胃动素、食欲素A及食欲素1型受体高于模型组,差异有统计学意义,P<0.05;模型组胃残留率、小肠推进率、胃泌素、胃动素、食欲素A及食欲素1型受体低于空白组,差异有统计学意义,P<0.05;针刺组与空白组胃残留率、小肠推进率、胃泌素、胃动素、食欲素A及食欲素1型受体差异无统计学意义,P>0.05。结论:针刺胃大部切除术后大鼠足三里穴、中脘穴,改善胃排空和小肠推进功能,促进术后胃肠功能的恢复,其作用机制可能为改变脑肠肽代谢,增加食欲素A水平,激活食欲素1型受体,促进胃泌素、胃动素分泌。  相似文献   

4.
目的:研究下丘脑室旁核注入胃动素及其拮抗剂对大鼠消化功能和体重增长的研究。方法:将剂量为0.005-5nmol的motilin和GM109注入大鼠下丘脑室旁核,1小时后可观察到大鼠摄食量显著增加并持续到两小时后。进食量的计算是通过预先称量好的鼠粮和应用药物20分钟、1小时、两小时后剩余数量比较而得出。实验持续一周。将实验组和对照组的进食量和体重进行比较。结果:室旁核注入胃动素5nmol的实验组和合并应用GM1090.005nmol的实验组在应用药物后1小时和2小时,可观察到摄食量显著增加(p〈0.01),一周后体重也增加(p〉0.05),然而摄食量的增加有显著性差异,体重的增加并无显著性差异。其他实验组也没有观察到显著性差异。结论:胃动素有调节消化运动,促进胃肠排空,促进食欲的作用。可能由于胃肠排空是频繁的,没有充裕的时间消化吸收,从而体重增加无显著性差异。  相似文献   

5.
目的:研究下丘脑室旁核注入胃动素及其拮抗剂对大鼠消化功能和体重增长的研究。方法:将剂量为0.005-5nmol的motilin和GM109注入大鼠下丘脑室旁核,1小时后可观察到大鼠摄食量显著增加并持续到两小时后。进食量的计算是通过预先称量好的鼠粮和应用药物20分钟、1小时、两小时后剩余数量比较而得出。实验持续一周。将实验组和对照组的进食量和体重进行比较。结果:室旁核注入胃动素5nmol的实验组和合并应用GM1090.005nmol的实验组在应用药物后1小时和2小时,可观察到摄食量显著增加(p<0.01),一周后体重也增加(p>0.05),然而摄食量的增加有显著性差异,体重的增加并无显著性差异。其他实验组也没有观察到显著性差异。结论:胃动素有调节消化运动,促进胃肠排空,促进食欲的作用。可能由于胃肠排空是频繁的,没有充裕的时间消化吸收,从而体重增加无显著性差异。  相似文献   

6.
Zs Csaba  V Csernus  I Gerendai 《Peptides》1997,18(10):1561-1567
Csaba, Zs., V. Csernus, and I. Gerendai. Local effect of PACAP and VIP on testicular function in immature and adult rats. Peptides 18(10) 1561–1567, 1997.—PACAP, VIP, anti-PACAP and anti-VIP antisera were injected intratesticularly. In 9-day-old hemicastrated rats PACAP or VIP decreased basal testosterone secretion. In 22-day-old hemicastrates VIP but not PACAP reduced compensatory testicular hypertrophy, however, neither PACAP nor VIP altered steroidogenesis. Anti-VIP antiserum to this age group increased testosterone production and enhanced compensatory testicular hypertrophy. In adult hemicastrates neither the peptides nor the antisera influenced steroidogenesis. Neither in immatures nor in adults treatment of both testes with PACAP or VIP had any effect. Data indicate that both PACAP and VIP might exert a local action on testicular steroidogenesis, on compensatory testicular hypertrophy, and these effects are age-dependent.  相似文献   

7.
The selective type A and B cholecystokinin (CCK) receptor antagonists L364,718 and L365,260 were used to identify the receptor subtype that mediates the satiety effect of endogenous CCK. Male rats (n = 12–13/group), fed ground rat chow ad lib, received L364,718 (0, 1, 10, 100, or 1000 μg/kg IP) or L365,260 (0, 0.1, 1, 10, 100, 1000, or 10,000 μg/kg IP) 2 h after lights off, and food intake was measured 1.5, 3.5, and 5.5 h later. L364,718 significantly stimulated 1.5-h food intake by more than 40% at 10 μg/kg and higher doses; cumulative intake at 3.5 and 5.5 h remained elevated by about 20% at 1000 and 100 μg/kg of L364,718, respectively. In contrast, L365,260 had no significant stimulatory effect on feeding at any dose. The potency of L365,260 for antagonizing gastrin-stimulated gastric acid secretion was examined in unanesthetized rats. Male rats (n = 14), prepared with gastric and jugular vein cannulas, received doubling doses of gastrin (G-17I) (0.16–5 nmol/kg/h IV), each dose for 30 min, and gastric juice was collected for each 30-min period. G-17I stimulated gastric acid output dose dependently; the minimal effective dose was 0.16 nmol/kg/h, while maximal output (5-fold above basal) occurred at 5 nmol/kg/h. L365,260 (0, 1, 10, 100, 1000, or 10,000 μg/kg IV), administered 30 min before continuous infusion of G-17I (1.25 or 5 nmol/kg/h), significantly inhibited acid output only at 10,000 μg/kg; cumulative 60-min output was decreased by 60%. These results suggest that CCK acts at CCK-A receptors to produce satiety during the dark period in ad lib-feeding rats.  相似文献   

8.
Mice were injected three times a day for 12 days with 300 micrograms/kg body weight of gastrin G17 or 37.5 Ivy dog U/kg body weight of CCK or saline. Other mice were also injected four times an hr for 1 hr with 7.5 micrograms/kg of gastrin, nine Ivy dog U/kg of CCK or saline; 1 hr before killing, they were injected with tritiated thymidine to evaluate the labelling indices in peptic, antral, duodenal, jejunal, and ileal mucosae. Four hours after the first injection of the two peptides, the peptic labelling indices increased while those of intestinal mucosa increased 8 hr after these injections. Long-term injections of CCK had a trophic effect on secretory cells of the digestive tract: the number of gastric zymogenic cells, Paneth cells, and the mucous cells of Brünner glands were hypertrophied. The pepsin, amylase, chymotrypsin, and lysozyme activities increased in stomach, exocrine pancreas, and intestine, respectively. Neither parietal cells nor intestinal enterocytes and hydrolase activities were affected. The trophic effect of long-term injections of gastrin is confirmed on parietal cells and exocrine pancreatic parenchyma and is demonstrated in Paneth cells. Confirming cytological results, pancreatic lipase and amylase activities and intestinal lysozyme activity were increased after gastrin. Although CCK and gastrin have a structural analogy, these two peptides did not affect the same cellular types. A specific action of CCK on the main secretory cells of the digestive mucosa is demonstrated.  相似文献   

9.
C H Wideman  H M Murphy 《Peptides》1991,12(2):285-288
The effects of subcutaneous injections of vasopressin in vasopressin-deficient (Brattleboro or DI) rats were observed during nonstress (habituation) and stress (food-restriction) conditions as compared to other rats. Four groups of animals were employed: 1) Long-Evans (LE) rats that were food restricted with no injections (normal control animals), 2) DI rats that were food restricted with no injections, 3) DI rats injected with vasopressin, and 4) DI rats injected with peanut oil (vehicle). The parameters studied were: body weight, food intake, water intake, and gastric ulcer formation. With respect to body weight, water intake, and ulcer formation, two sets of animals emerged. The vasopressin-injected DI rats resembled the LE control rats, whereas the peanut oil-injected DI rats were similar to the DI rats with no injections. The former set of animals showed a higher body weight, reduced water intake, and fewer gastric ulcers than the latter set of animals. Thus the vasopressin-injected DI rats and the LE control rats could cope with the stress of food restriction, but the peanut oil-injected DI rats and the DI rats with no injections could not.  相似文献   

10.
Acute mountain sickness (AMS) is characterized by headache often accompanied by gastrointestinal complaints that vary from anorexia through nausea to vomiting. The aim of this study was to investigate the influence of high altitude on plasma levels of gastroenteropancreatic (GEP) peptides and their association to AMS symptoms. Plasma levels of 6 GEP peptides were measured by radioimmunoassay in 11 subjects at 490 m (Munich, Germany) and, after rapid passive ascent to 3454 m (Jungfraujoch, Switzerland), over the course of three days. In a second study (n = 5), the same peptides and ghrelin were measured in subjects who consumed standardized liquid meals at these two elevations. AMS symptoms and oxygen saturation were monitored. In the first study, both fasting (morning 8 a.m.) and stimulated (evening 8 p.m.) plasma levels of pancreatic polypeptide (PP) and cholecystokinin (CCK) were significantly lower at high altitude as compared to baseline, whereas gastrin and motilin concentrations were significantly increased. Fasting plasma neurotensin was significantly enhanced whereas stimulated levels were reduced. Both fasting and stimulated plasma motilin levels correlated with gastrointestinal symptom severity (r = 0.294, p = 0.05, and r = 0.41, p = 0.006, respectively). Mean O2-saturation dropped from 96% to 88% at high altitude. In the second study, meal-stimulated integrated ( = area under curve) plasma CCK, PP, and neurotensin values were significantly suppressed at high altitude, whereas integrated levels of gastrin were increased and integrated VIP and ghrelin levels were unchanged. In summary, our data show that acute exposure to a hypobaric hypoxic environment causes significant changes in fasting and stimulated plasma levels of GEP peptides over consecutive days and after a standardized meal. The changes of peptide levels were not uniform. Based on the inhibition of PP and neurotensin release a reduction of the cholinergic tone can be postulated.  相似文献   

11.
Adult male rats given ad lib access to food and a running wheel show an initial feeding and weight suppression. Over 6-10 days feeding recovers, but body weight remains low. It is not clear which effect is primary, the wheel-induced feeding or weight change. To test this, rats were first restricted to 15 g of food a day for 8 or 16 days to reduce their weight relative to control non-restricted rats. They were then returned to ad lib feeding and half the restricted and non-restricted control rats were introduced to the wheel either immediately (Experiment 1) or 4 days later (Experiment 2). Food intake, body weight, and wheel running were monitored throughout the experiments. At the return to ad lib feeding, prior food restriction elevated feeding. Both immediate and delayed wheel access suppressed feeding in both groups of wheel access rats compared to the appropriate control rats. Feeding history did not have a significant effect on wheel running. The wheel-induced reductions in feeding from baseline were similar in the weight reduced and normal weight animals suggesting that prior weight restriction did not prevent the onset of the wheel-induced feeding suppression. It is therefore suggested that the feeding suppression is not driven by a reduced weight set point.  相似文献   

12.
Running wheel access and resulting voluntary exercise alter food intake and reduce body weight. The neural mechanisms underlying these effects are unclear. In this study, we first assessed the effects of 7 days of running wheel access on food intake, body weight, and hypothalamic gene expression. We demonstrate that running wheel access significantly decreases food intake and body weight and results in a significant elevation of CRF mRNA expression in the dorsomedial hypothalamus (DMH) but not the paraventricular nucleus. Seven-day running wheel access also results in elevated arcuate nucleus and DMH neuropeptide Y gene expression. To assess a potential role for elevated DMH CRF activity in the activity-induced changes in food intake and body weight, we compared changes in food intake, body weight, and hypothalamic gene expression in rats receiving intracerebroventricular (ICV) CRF antagonist alpha-helical CRF or vehicle with or without access to running wheels. During a 4-day period of running wheel access, we found that exercise-induced reductions of food intake and body weight were significantly attenuated by ICV injection of the CRF antagonist. The effect on food intake was specific to a blockade of activity-induced changes in meal size. Central CRF antagonist injection further increased DMH CRF mRNA expression in exercised rats. Together, these data suggest that DMH CRF play a critical role in the anorexia resulting from increased voluntary exercise.  相似文献   

13.
Cholecystokinin (CCK), bombesin and gastrin were stereotaxically injected into catecholamine (CA) innervated areas of the lateral hypothalamus (LH), the nucleus caudatus putamen (NP) and the olfactory tubercle (OT) in male Sprague Dawley rats. Bilateral injections of 100 ng of CCK in 2 μl of vehicle into the LH produced a slight but significant decrease in food intake during the first hour of a 4 hour eating test. The other peptides when injected into any of the brain areas did not significantly alter food intake. Water intake was affected by the injection of all three hormones although differentially in all 3 sites. The observed changes in drinking were not related to the prandial characteristics of drinking typically seen in rodents. Denervation of the CA innervation of the OT, LH or NP with 6-hydroxydopamine did not change the satiety response to peripherally administered CCK displayed by intact animals. These results suggest that the satiety which occurs after the central and peripheral administration of CCK may be mediated by different mechanisms and that central CA systems may not be necessary for CCK-induced satiety to occur during natural feeding.  相似文献   

14.
We previously showed that peptides containing leptin sequences 1-33 or 61-90 are taken up by the rat brain. We now report the effects of these peptides on food intake and body weight in mature rats. Peptides were infused intravenously for 4weeks, using Alzet minipumps. Dosages were 20μg/kg/day in experiment I, and 60μg/kg/day in experiment 2. In experiment 1, female rats receiving peptides 1-33 and 61-90 each underwent an approximate doubling of the weight gain of control rats. These peptides also increased food intake in female rats. Peptide 15-32, which has a lesser degree of brain uptake, gave a smaller weight gain. Peptide 83-108, which is not taken up by the brain, had no effect on weight gain or food intake. Similar results were obtained in experiment 2. In male rats, however, none of the peptides caused significant changes in food intake or body weight. This was at least partly due to the fact that all male rats underwent vigorous weight increases. We conclude that peptides 1-33 and 61-90 acted as leptin antagonists, stimulating food intake and body weight increases, at least in female rats. These peptides may lead to clinical applications in conditions such as anorexia and cachexia.  相似文献   

15.
B A Gosnell  M Grace  A S Levine 《Life sciences》1987,40(15):1459-1467
beta-Chlornaltrexamine (beta-CNA) is a non-equilibrium opioid receptor antagonist which alkylates and inactivates opioid receptors. Because opioid peptides are thought to contribute to the regulation of food intake, we examined the effects of intracerebroventricular (icv) injections of beta-CNA on the food intake and body weight of male rats. We also tested the ability of beta-CNA to block food intake stimulated by selective agonists of kappa, mu and delta opioid receptors: dynorphin A2 (DYN), Tyr-D-Ala-Gly-(Me)Phe-Gly-ol (DAGO), and [(D-Ser2,Leu5]-enkephalin-Thr6 (DSLET). Treatment with beta-CNA caused a long-term (2-4 days) reduction in daily food intake and a concomitant reduction in body weight. An additional experiment indicated that the weight loss after beta-CNA treatment could be completely accounted for by the reduction in intake. beta-CNA treatment also abolished or greatly attenuated the feeding effects of DAGO, DSLET and DYN, even when these peptides were tested 26 hours after beta-CNA administration. The long duration of the effects of beta-CNA suggests that this compound will be a useful pharmacological tool in further study of the opioid feeding system.  相似文献   

16.
The amino acid sequences of the gastroenteropancreatic peptides of Old World mammals are generally well-conserved. However, only the glucagons and vasoactive intestinal polypeptides (VIP) have been shown to be identical among the species studied to date. Rhesus monkey (Macaca mulatta) insulin has been shown to be identical with human insulin. The question addressed in this study is whether other gastroenteropancreatic peptides are identical to the human peptides. Purification and sequencing of glucagon, pancreatic polypeptide, VIP and insulin confirmed their identity with the corresponding human peptides. However, the 17 amino acid monkey gastrin is identical to dog gastrin and differs from human gastrin by substitution of methionine for leucine at position 5 from the N-terminus and alanine for glutamic acid in position 10. If additional rhesus monkey tissues become available, it would be of interest to determine whether other gastrointestinal peptides also differ from the corresponding human peptides.  相似文献   

17.
R. LEMA-KISOKA, N. HAYEZ, I. LANGER, P. ROBBERECHT, E. SARIBAN AND C. DELPORTE. Characterization of functional VIP/PACAP receptors in the human erythroleukemic HEL cell line. PEPTIDES. The presence of VIP/PACAP receptors was investigated on the human erythroleukemic cell line HEL. Specific binding of [125I]-PACAP or [125I]-VIP on HEL cells or membranes was very low and did not allow to perform competition curves. At 37°C PACAP transiently increased cAMP levels in the presence of the non-specific phosphodiesterase inhibitor IBMX, suggesting rapid desensitization. Kinetic studies revealed that optimal conditions to measure the EC50 of PACAP(1–27) were 10 min at 20°C. Under those conditions, PACAP-related peptides increased cAMP levels with EC50 in agreement with the pharmacological profile of the VPAC1 receptor subtype: PACAP = VIP > [K15, R16, L27]VIP(1–7)/GRF(8–27) = [R16]ChSn (two VPAC1 agonists) HELODERMIN = secretin. RO 25–1553, a selective activator of VPAC2 receptor was inactive at 1 μM. Dose-response curves of VPAC1 agonist molecules (PACAP, VIP, [K15, R16, L27]VIP(1–7)/GRF(8–27), [R16]ChSn) were shifted to the right by the VPAC1 receptor antagonist [AcHis1, D-Phe2, Lys15, Leu17]VIP(3–7)/GRF(8–27), with a Ki of 3 ± 1 nM (n = 3). The presence of VPAC1 receptor mRNA was confirmed by RT-PCR. Preincubation with PACAP or PMA showed that VPAC1 receptors underwent homologous and heterologous desensitization.

This study provides the first evidence for the expression of functional VPAC1 receptors undergoing rapid desensitization in HEL cells.  相似文献   


18.
Antral and serum gastrin concentrations were found to be significantly lower in female than in male rats. Following ovariectomy, serum gastrin concentration significantly increased to male levels; tissue gastrin also increased, but not significantly. Daily injections of estradiol benzoate (2 mug/day) abolished the rise in gastrin levels after ovariectomy. Antral and serum gastrin concentrations were significantly higher in lactating rats than in any other group tested. The possible relationships among sex-dependent changes in food intake, gastrin concentration, and gastric secretion are discussed.  相似文献   

19.
Functional and specific receptors for vasoactive intestinal peptide (VIP) (determined by their capacity to bind 125I-VIP and activate adenylate cyclase) and cyclic AMP-dependent phosphodiesterase activities were characterized in enterocytes of human fetal small intestine between 18 and 23 weeks of gestation. Half-maximal stimulation of the cyclase and inhibition of 125I-VIP binding in membrane preparations were respectively observed at 1.4 and 5 × 10−10 M VIP. The peptides structurally related to VIP activated the cyclic AMP generating system at pharmacological doses (10−7M and above) in the following order of potency: VIP> PHI> GRF> secretin. Other peptides or test substances, including GIP, pancreatic glucagon, somatostatin-14, gastrin, CCK, neurotensin, pancreatic polypeptide, PYY, substance P, histamine and isoproterenol are inactive in this system, while the ubiquitous adenylate cyclase activators NaF, forskolin and prostaglandins were effective. These results, combined with the appearance of intestinal VIP in nerve fibers at 8 weeks and with the morphological and enzymatic maturation at 9–12 weeks of the intestinal mucosa, indicate that this neuropeptide may regulate either the differentiation or function of enterocytes during the early development of human intestinal mucosa.  相似文献   

20.
Suppression of food intake and body weight gain by naloxone in rats   总被引:1,自引:0,他引:1  
The effect of acute and chronic administration of naloxone on food acquisition and weight gain in rats was studied in 3 experiments. One injection of a sparingly-soluble salt of naloxone in slow-release vehicle markedly lowered mean food intake over that of control rats injected with the vehicle only. Mean body weight of the naloxone-injected rats was significantly lower than that of the control group for one week.Repeated evening injections (2000 h) of naloxone hydrochloride in saline tended to reduce the night-time feeding below control levels throughout the 10-day period of naloxone administration. Food intake was significantly lower in the 4- and 8-h periods after the first injection of naloxone than that on the preceding saline control night. The initial decreases were offset by increased day-time feeding so that total daily food intake was not significantly altered over the 10 days. When saline was substituted for naloxone, food intake increased.Rats given naloxone following 24 h of fasting consumed significantly less food and gained less weight during 4 h of access to food compared to those receiving saline. After a 48-h fast naloxone-treated rats also gained significantly less body weight than those given saline, but the reduction in food intake was not statistically significant. These results suggest the possibility that endorphins may have a modulating effect on feeding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号