首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为了建立一种在先天性智力低下患儿中快速分析脆性X综合征智力低下基因1(Fragile X mental retardation gene 1.FMR-1)突变的方法,对先天性智力低下儿童进行脆性X综合征的大面积筛查和诊断,应用复式多聚酶链式反应一次性扩增FMR-1基因的(CGG)n的重复区,分析CGG重复序列的大小,判断FMR-1基因状态(正常、突变前、突变后),对脆性X综合征可疑患儿快速筛查,在113倒不明原因的先天性智力低下患儿中,分析有脆性X综合征携带者(FMR-1基因前突变者)7例(2男5女),脆性X综合征患者(FMR-1基因突变者)5例,应用多聚酶链式反应可以对脆性X综合征可疑患儿进行大面积初筛,确定携带者和患者。  相似文献   

2.
目的:优化PCR扩增条件,建立一种有效检测脆性X综合征的方法。方法:在常规PCR的基础上,采用耐高温酶替代法、碱基替代法,同时加入有机溶剂DMSO等,对表型正常的人群进行FMR1基因CGG重复序列检测。结果:改良PCR法可以提高G C富集区扩增效率,并取得了较好的效果。结论:建立了一种扩增FMR-1基因中CGG重复序列的可行方法。  相似文献   

3.
高羊茅在生长季出现生殖枝,抑制新枝形成,不利于草坪质量及其持久性生长.研究春化基因的分子特征,探索抑制生殖生长的分子育种新途径,对坪用型高羊茅品种改良具有重要意义.本研究在克隆高羊茅春化基因FaVRN1的基础上,构建高羊茅春化基因FaVRN1与绿色荧光蛋白基因GFP融合的植物表达载体p-FaVRN1-hGFP,利用基因枪转化法转入洋葱表皮细胞,荧光显微镜检测融合基因的瞬时表达,并运用实时荧光定量PCR分析春化基因FaVRN1在春化与非春化条件下的表达差异.研究结果表明,FaVRN1基因编码的蛋白产物位于细胞核,符合它作为转录因子特性;春化条件下,FaVRN1基因的表达随处理时间延长逐渐增加.非春化条件下,FaVRN1基因的表达随处理时间延长而降低.FaVRN1基因在春化条件下的表达水平远高于非春化条件,FaVRN1基因的表达受春化条件正调控.  相似文献   

4.
将小麦高分子量麦谷蛋白亚基(HMW-GS)基因的胚乳组织特异性表达启动子驱动的外源突变型1Dx5基因和gus基因导入小麦中.对其转基因植株连续3代的跟踪研究表明,突变型1Dx5基因的重复序列导致其表达蛋白分子量增大,并影响其它1Bx17 1By18亚基基因的表达.组织化学分析观察到gus基因在1Dx5基因启动子驱动下的表达表现出胚乳组织特异性,在开花2周后开始表达,表达量呈持续上升,至腊熟期达到最高,其次为籽粒成熟期.  相似文献   

5.
Figla基因过表达促进小鼠胚胎干细胞向雌性生殖细胞分化   总被引:1,自引:0,他引:1  
生殖系a因子(Figla)是最早表达的生殖细胞特异性转录因子之一,对卵泡的发育、Zp基因的表达和透明带的形成具有调节作用. Figla基因异常会引起卵巢早衰的发生. 本研究通过 PCR自小鼠基因组中扩增出Figla基因,将其克隆到真核报告载体pDsRed1 N1,构建了携带609 bp 的Figla重组载体pDsRed1 N1 Figla. 用该载体转染小鼠胚胎干细胞(mESCs)系J1、小鼠成纤维细胞系NIH 3T3、小鼠畸胎瘤细胞P19和小鼠精原细胞系GC1,在荧光显微镜下观察红色荧光蛋白(RFP)在细胞中的表达,同时检测转染细胞中Figla基因及其它生殖细胞特异性基因的表达. 结果显示,转染2 d,mESCs内Figla总表达量明显增加,且内源性表达量亦有所提高,即转入的外源性Figla基因可以促进内源性Figla的启动和表达. 免疫荧光染色显示,表达RFP 的细胞同时表达生殖特异性基因Vasa,减数分裂特异性基因Stra8、Scp3及卵母细胞标志基因Zp3. 通过QRT PCR检测发现,在转染3 d的细胞中,Vasa、Scp3和Zp1的表达较对照组均有明显上调,而Oct4和Stra8的表达量下降. 研究表明,Figla基因对生殖特异性基因的表达具有调控作用,可以激活雌性生殖基因表达,为更清楚地了解Figla基因在生殖细胞生长发育过程中的调控机制,以及发现该基因在生殖细胞中的新功能奠定了基础.  相似文献   

6.
运用cDNA微阵列技术分析NAG7基因重表达对HNE1细胞基因表达谱的影响.抽提HNE1细胞和pcDNA3.1(+)/NAG7/HNE1细胞总RNA,分离polyA mRNA,将mRNA逆转录为cDNA,并在逆转录过程中用33P-dATP进行标记,与含有16 150个基因和表达序列标签(EST)的cDNA表达阵列膜杂交,获得基因表达图谱.Array Gauge软件分析NAG7基因的重表达所导致的鼻咽癌细胞HNE1基因表达谱改变,并用RNA印迹对微阵列杂交结果进行验证.结果分析表明,2倍以上的差异表达基因或EST 179个,其中表达上调的91个,表达下调的88个;已明确基因表达产物的上调基因29个,下调基因37个.在差异表达基因中,涉及基因转录调控、信号转导、细胞生长、细胞代谢和细胞凋亡等基因.RNA印迹证实生长阻滞特异蛋白1(gas 1)基因表达上调.特别值得关注的是, 先前的蛋白质组研究结果亦发现NAG7基因可导致生长阻滞特异蛋白1表达上调,说明gas 1基因在NAG7重表达的HNE1细胞中具有重要作用,这为深入研究NAG7基因的作用环节和机理提供了重要的线索.  相似文献   

7.
 研究腺病毒介导的低氧诱导因子=1α(HIF=1α)在急性心肌梗死(AMI)后缺血心肌中的表达变化.建立兔AMI模型,随机分为4组,分别心肌内注入腺病毒介导的HIF-1α基因(Ad-HIF-1α)、不含HIF-1α基因腺病毒颗粒(Ad--Blank)、HIF-1α核酶基因(Rz-HIF-1α),假手术组(Sham)为对照.RT-PCR和免疫组化方法分别检测HIF-1α及下游基因VEGF的mRNA和蛋白在不同时间点的表达.结果显示,AMI后1 d, HIF-1α、VEGF的mRNA和蛋白表达开始升高,7 d 达高峰,14 d、28 d逐渐下降,56 d时HIF-1αmRNA和蛋白无表达,而VEGF mRNA和蛋白仍有表达. 因此, 腺病毒介导的HIF-1α基因在缺血心肌能被有效转染并激活,其表达的时间窗为心肌缺血急性期至亚急性期.HIF-1α核酶基因能抑制HIF-1α及其下游基因的表达.  相似文献   

8.
RASSF1A(Ras association domain family 1 isoform A)是定位于染色体3p21.3区域的抑瘤基因,编码一个由340个氨基酸残基构成的微管相关蛋白.该基因在包括恶性黑色素瘤在内的多种肿瘤中因启动子高甲基化而表达沉默.本研究建立了RASSF1A稳定表达的恶性黑色素瘤A375细胞系,通过全基因组表达谱基因芯片分析RASSF1A过表达对A375细胞基因表达谱的影响,发现RASSF1A引起184个基因表达上调,26个基因表达下调.通过Realtime RT-PCR对部分差异表达基因进行验证,结果表明与芯片筛选结果一致.RASSF1A影响的差异表达基因功能上归属于细胞生长与增殖、细胞周期、细胞凋亡、细胞间黏附、信号传导等生物过程.采用STRING软件构建了RASSF1A影响的差异表达基因调控网络,结果表明RASSF1A调控的差异表达基因构成一个高连接度的基因网络.其中,炎症细胞因子、转录因子位于网络中央.RASSF1A通过影响炎症细胞因子与转录因子之间的表达,影响A375细胞基因网络,调节黑色素瘤恶性生物学行为.  相似文献   

9.
抗病毒基因MxA真核表达载体的构建及在鸡细胞中的表达   总被引:5,自引:0,他引:5  
将人抗病毒蛋白基因MxA与携带增强型绿色荧光蛋白(EGFP)基因的真核表达质粒重组后构建MxA基因真核表达载体pEGFP-C1-MxA.经PCR和酶切方法鉴定后,重组质粒在脂质体介导下转染鸡成纤维细胞和睾丸组织原代细胞,通过荧光观察,RT-PCR及细胞免疫组化检测目的基因的表达.结果表明,MxA基因片段已经被克隆到pEGFP-C1表达载体,成功构建了MxA基因真核表达载体pEGFP-C1-MxA.经该重组质粒转染后的鸡细胞的胞质中呈现颗粒状分布的绿色荧光,RT-PCR扩增出EGFP和MxA基因的特异性片断,免疫组化结果显示EGFP报告基因在细胞内的阳性表达,并表现出MxA的表达特征,间接证明了MxA可在鸡细胞中表达.MxA基因真核表达载体的成功构建以及在鸡细胞中的表达为进一步研究MxA基因在抗禽病毒性疾病中的应用打下了基础.  相似文献   

10.
拟南芥CIPK1基因的功能初步分析   总被引:1,自引:0,他引:1  
以模式植物拟南芥为材料,采用RT-PCR分析、基因克隆、转化等方法对CIPK1基因功能进行了研究.结果发现,CIPK1(CBL-interacting protein kinase 1)基因在拟南芥茎和花中表达量最高,在叶中表达量最低;ABA能迅速诱导CIPK1基因的表达,GA则抑制该基因的表达,但2,4-D和6-BA对该基因的表达无明显影响;通过对CIPK1基因转基因突变体进行ABA处理,发现转基因拟南芥种子的萌发率明显高于野生型.以上结果表明CIPK1基因的表达具有组织特异性,并且该基因参与ABA和GA信号传导,尤其在ABA促进种子休眠的信号传导途径中具有非常重要的作用.  相似文献   

11.
Absence of expression of the FMR-1 gene in fragile X syndrome   总被引:93,自引:0,他引:93  
We previously reported the isolation of a gene (FMR-1) expressed in brain at the fragile X locus. One exon of this gene lies within an EcoRI fragment that exhibits length variation in fragile X patients. This exon also contains the CGG repeat within the CpG island hypermethylated in fragile X patients. To study the involvement of the FMR-1 gene in the fragile X syndrome, its expression was studied in lymphoblastoid cell lines and leukocytes derived from patients and normal controls. FMR-1 mRNA was absent in the majority of male fragile X patients, suggesting a close involvement of this gene in development of the syndrome. Normal individuals and carriers all show expression. The methylation status of the BssHII site at the CpG island was also studied by Southern blot analysis of DNA from patients, carriers, and controls. The minority of fragile X affected males that show expression of FMR-1 demonstrated an associated incomplete methylation of the BssHII site.  相似文献   

12.
A gene designated "FMR-1" has been isolated at the fragile-X locus. One exon of this gene is carried on a 5.1-kb EcoRI fragment that exhibits length variation in fragile-X patients because of amplification of or insertion into a CGG-repeat sequence. This repeat probably represents the fragile site. The EcoRI fragment also includes an HTF island that is hypermethylated in fragile-X patients showing absence of FMR-1 mRNA. In this paper, we present further evidence that the FMR-1 gene is involved in the clinical manifestation of the fragile-X syndrome and also in the expression of the cellular phenotype. A deletion including the HTF island and exons of the FMR-1 gene was detected in a fragile X-negative mentally retarded male who presented the clinical phenotype of the fragile-X syndrome. The deletion involves less than 250 kb of genomic DNA, including DXS548 and at least five exons of the FMR-1 gene. These data support the hypothesis that loss of function of the FMR-1 gene leads to the clinical phenotype of the fragile-X syndrome. In the fragile-X syndrome, there are pathogenetic mechanisms other than amplification of the CGG repeat that do have the same phenotypic consequences.  相似文献   

13.
Fragile X syndrome is the most frequent form of inherited mental retardation and is associated with a fragile site at Xq27.3. We identified human YAC clones that span fragile X site-induced translocation breakpoints coincident with the fragile X site. A gene (FMR-1) was identified within a four cosmid contig of YAC DNA that expresses a 4.8 kb message in human brain. Within a 7.4 kb EcoRI genomic fragment, containing FMR-1 exonic sequences distal to a CpG island previously shown to be hypermethylated in fragile X patients, is a fragile X site-induced breakpoint cluster region that exhibits length variation in fragile X chromosomes. This fragment contains a lengthy CGG repeat that is 250 bp distal of the CpG island and maps within a FMR-1 exon. Localization of the brain-expressed FMR-1 gene to this EcoRI fragment suggests the involvement of this gene in the phenotypic expression of the fragile X syndrome.  相似文献   

14.
The fragile X phenotype has been found, in the majority of cases, to be due to the expansion of a CGG repeat in the 5'-UTR region of the FMR-1 gene, accompanied by methylation of the adjacent CpG island and inactivation of the FMR-1 gene. Although several important aspects of the genetics of fragile X have been resolved, it remains to be elucidated at which stage in development the transition from the premutation to the full mutation occurs. We present two families in which discordance between two sets of MZ twins illustrates two important genetic points. In one family, two affected MZ brothers differed in the number of CGG repeats, demonstrating in vivo mitotic instability of this CGG repeat and suggesting that the transition to the full mutation occurred postzygotically. In the second family, two MZ sisters had the same number of repeats, but only one was mentally retarded. When the methylation status of the FMR-1 CpG island was studied, we found that the majority of normal chromosomes had been inactivated in the affected twin, thus leading to the expression of the fragile X phenotype.  相似文献   

15.
16.
17.
18.
The fragile X syndrome (Fra-X) is the most common cause of inherited mental retardation with X-linked semi-dominant inheritance. The prevalence of Fra-X in the Mexican population is unknown. The aim of this population screening study was to determine if Fra-X or FRAXE mutations are the cause of a number of cases of mental retardation in a sample of Mexican children with mental retardation of unknown cause (MRUC) and to stress the importance of performing molecular analysis of the FMR-1 gene in all patients with MRUC. We report here the direct analysis of CGG and GCC repeats within the FMR-1 and FMR-2 genes, respectively, in 62 unrelated patients with MRUC. Two male index cases had the CGG expansion, although they did not express the Xq27.3 fragile site cytogenetically. Fra-X diagnosis was highly suspected on a clinical basis in one of the patients, but not in the other. Both mothers were found to be premutation carriers. The molecular studies of FMR-1 showed that the proportion of MRUC patients with Fra-X is 3.2%. This frequency was not significantly different to that reported in most populations. As reported in other series, no patients with FRAXE were found in our sample. Our findings confirm that the molecular analysis of the FMR-1 gene is necessary in MRUC patients to achieve unequivocal diagnosis of fragile X syndrome, carrier premutation detection and for accurate genetic counseling.  相似文献   

19.
以甘蓝型油菜(Brassica napus L.)品种‘Westar’和‘Topas’为材料,通过超微结构观察和荧光定量PCR技术对油菜胚胎发育早期油体的发生、油体蛋白及脂肪酸合成转录因子基因的表达情况进行分析。结果显示:油体出现在油菜胚胎发育早期,在授粉9~11 d后(球形胚时期)的胚体和胚柄中均存在直径小于0.5 μm的油体;荧光定量实验结果表明,除BnCLO3的表达量在整个胚胎发育阶段无明显变化外,其他油体蛋白基因Oleosins、Steroleosins和BnCLO1的表达量在心形胚时期就明显增多并持续增长;脂肪酸合成转录因子BnLEC1、BnL1L、BnWRI1和BnFUS3在胚胎发育阶段,基因表达规律均呈先上升再下降的趋势,但达到最高值的时间存在差异,其中BnLEC1最早,BnL1L其次,BnWRI1和BnFUS3较晚。研究结果表明甘蓝型油菜在球形胚时期出现油体,其结构蛋白和转录调控因子基因的表达自心形胚开始明显增多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号