首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
目的:建立检测猪常见致病菌的反向斑点杂交方法。方法:将23S rRNA基因芯片用的针对12种细菌的25~30 mer探针加长到30~38 mer,2对通用引物序列不变。用地高辛标记下游引物,以尼龙膜为载体制备膜芯片,检验探针/膜杂交的特异性和敏感性;另外设计1条大肠杆菌K88基因探针、一段带K88探针的报告基因和1对报告基因的反向PCR引物,在PCR体系中增加封口的K88报告基因和反向引物对,被检样品扩增后进行膜杂交。结果:修改的13条探针与参考目标菌株在膜上成特异性杂交,对52个参考菌株和野外分离株的检测准确率为92%;膜杂交的敏感性与玻片芯片接近,最小检出量为100 fg DNA;在尼龙膜上增加K88探针,与3重PCR产物杂交,可以检测到大肠杆菌K88毒力基因。结论:建立的反向斑点杂交方法简便快速,检测成本低,可用于仪器设备不足的实验室,同时可以加入检测如大肠杆菌K88等致病基因,提高基于保守基因的芯片的诊断能力。  相似文献   

2.
运用基因芯片技术检测牛、山羊、猪和鸡源性成分   总被引:3,自引:0,他引:3  
本研究通过对脊椎动物分子标记基因进行序列分析,最终选择线粒体DNA(mtDNA)16S rRNA基因为目标基因,利用一对通用引物,在该引物扩增区间设计了4条特异性基因芯片检测探针及2条质控探针用于对牛、山羊、猪、鸡等4种动物源性成分进行检测。通过对PCR扩增体系及杂交体系的优化,该检测方法能实现对上述4种动物源性成分同时进行快速、准确地检测,具有很好的特异性,灵敏度均达到1pg,最终建立了这4种动物源性基因芯片检测方法。该基因芯片检测技术将为我国进出口饲料中的动物源性成分的鉴别提供新的检测方法和技术支持。  相似文献   

3.
【背景】近些年,16S rRNA基因测序与宏基因组分析常用于肠道微生物病原体检测。【目的】为了使检测不受限于高成本与耗时长的问题,基于荧光探针的实时荧光定量PCR(real-time fluorescence quantitative PCR, qPCR),建立一种评估人类肠道微生物群组成的平台用于检测肠道微生物丰度。【方法】从公共数据库筛选10种肠道中普遍存在的微生物分类群,使用20个粪便样本验证为10种靶标所设计的特异性引物与探针,最后通过比较qPCR方法和16SrRNA基因测序技术的检测结果来评估该平台的有效性。【结果】10对引物及其探针对靶标分类群具有特异性并且在HITdb数据库中靶向菌种的覆盖率超过70%;样本检测结果的变异系数(coefficient of variation,CV)小于10%,证明了该方法具有很高的稳定性;qPCR方法检测样本中物种的相对丰度与16S rRNA基因序列生物信息学分析结果大部分具有显著相关性(P<0.05)。【结论】本研究根据HITdb数据库设计的靶向微生物群的引物和探针检测到的粪便样本中微生物的相对丰度结果与16S rRNA基因测序结...  相似文献   

4.
目的检测S180及其克隆细胞株S1B11及S2D9mRNA的表达,对这些细胞株进行识别和质量控制.方法用生物素标记的6种cDNA探针,细胞玻片原位杂交的方法检测细胞中mRNA的表达.结果北京市肿瘤研究所(肿瘤所)保存的S180与生物素标记的P16、c-fos、c-myc及c-jun探针杂交阳性,克隆细胞株S1B11与c-fos及c-jun探针杂交阳性,克隆细胞株S2D9与c-fos、c-myc及c-jun探针杂交阳性.结论肿瘤所S180及其2株克隆细胞中mRNA的表达不同,c-myc基因的表达与否可以把S1B11及S2D9克隆细胞区别开;细胞株致瘤性与癌基因表达有关.  相似文献   

5.
两种非放射性标记方法在染色体原位杂交中敏感性的比较   总被引:1,自引:0,他引:1  
乔旭刚  朱平 《生物技术》1995,5(5):19-21
通过原位杂交比较了地高辛配基和生物素标记探针,检测染色体单拷贝基因的敏感性。结果表明:在打点检测条上地高辛配基可检出30fg低限探针DNA,生物素为1pg。经原位杂交地高辛配基可检测出单拷贝基因,生物素未成功。  相似文献   

6.
实验利用通用细菌探针和3株纤维分解菌的特异性探针,初步建立起对瘤胃细菌进行检测的16S rRNA定量杂交的方法。试验将提取的总RNA按浓度系列稀释后与通用细菌探针进行杂交,检测结果所做的回归分析表明,杂交信号与尼龙膜上的所点RNA的量具有明显线性关系。同时对几份瘤胃样品进行3种纤维分解菌的初步定量检测,结果显示3种纤维分解菌的相对丰度与前人报道相似,表明该方法能够对瘤胃细菌进行定量分析,可在后续相关研究中使用。  相似文献   

7.
杨旭  肖潇  陈章  李会东  邓乐 《微生物学通报》2007,34(6):1169-1173
基于金黄色葡萄球菌16S rRNA基因序列,采用序列比对设计了一种茎环结构的寡聚核苷酸探针。探针的环序列即为金黄色葡萄球菌16S rRNA基因序列的其中一个片段,同其他菌种的16S rRNA基因序列误配2个以上的核苷酸,因此能高度专一、灵敏的检测金黄色葡萄球菌16S rRNA。根据分子信标技术和酶联免疫分析的原理,评估一个实验方法,即利用能构象转换的、固定化的茎环结构探针酶联检测靶核酸。由于探针的特异性加强,这个检测系统能有效的排除假阳性即不会出现误配一个核苷酸的情况。采用微量浓度测定分析,最低下限可检测出大约4ng的金葡球菌16SrRNA。这种方法的灵敏度比其他常规检测方法高出了至少一个数量级。  相似文献   

8.
试验旨在探讨利用纳米金标记寡核苷酸探针快速检测小反刍兽疫病毒核酸的方法。针对小反刍兽疫病毒N基因的高度保守区设计两条特异寡核苷酸探针,一条探针5’端修饰生物素,另一条探针3’端修饰巯基。巯基化的探针通过Au-S键连接到纳米金颗粒上。靶核酸两端分别与两条探针结合,形成"生物素化探针-靶核酸-纳米金探针"复合物,该复合物通过生物素-亲和素系统,固定在固相载体上,最后银染放大信号。通过肉眼观察法、光镜观察法、分光光度法分析银染灰度,从而间接测定靶核酸的量。初步检测PPRV核酸最低浓度达10fmol/L,所需时间约为1.5h。该方法灵敏度高、操作简单,为临床检测小反刍兽疫病毒核酸提供实验数据和技术支持。  相似文献   

9.
蓖麻蚕的核糖体核糖核酸(rRNA)的基因(rDNA)是多拷贝基因,其重复单位成线性方向排列。在每一重复单位中含有18S、28S和5.8S rRNA基因各一个。了解它们的排列状况是认识rDNA结构的基础。本文将无性繁殖的该rDNA用各种限制性内切酶水解后,制成Southern转移膜与放射性同位素标记的18S、28S和5.8S rRNA杂交;又将18S和28S rRNA制成Northern转移膜与放射性同位素标记的rDNA片段杂交,从而排出18S、28S和5.8S rRNA基因在rDNA上面的相对位置。  相似文献   

10.
目的探讨地高辛标记寡核苷酸基因探针应用于微生态研究的可行性和实用性。方法制备双歧杆菌属和部分种的地高辛标记16S rRNA寡核苷酸探针,初步应用于微生态制剂鉴定和临床肠道微生态检测,评价寡核苷酸探针杂交在肠道微生态研究和检测中的应用价值。结果地高辛标记寡核苷酸探针具有较好的特异性与灵敏度:地高辛标记的双歧杆菌属和种的共6种寡核苷酸基因探针与标准菌株杂交后灵敏度和特异度分别为属探针95%、75%,青春双歧87.5%、90%,两歧双歧87.5%、87.5%,短双歧87.5%、92.5%,婴儿双歧75%、95%,长双歧75%、100%。结论寡核苷酸基因探针用于肠道细菌的鉴定显示出一定前景,加大探针的种类与扩大调查范围有可能使该技术替代现有细菌培养技术。  相似文献   

11.
The bacterioneuston is defined as the community of bacteria present within the neuston or sea surface microlayer. Bacteria within this layer were sampled using a membrane filter technique and bacterial diversity was compared with that in the underlying pelagic coastal seawater using molecular ecological techniques. 16S rRNA gene libraries of approximately 500 clones were constructed from both bacterioneuston and the pelagic water samples and representative clones from each library were sequenced for comparison of bacterial diversity. The bacterioneuston was found to have a significantly lower bacterial diversity than the pelagic seawater, with only nine clone types (ecotaxa) as opposed to 46 ecotaxa in the pelagic seawater library. Surprisingly, the bacterioneuston clone library was dominated by 16S rRNA gene sequences affiliated to two groups of organisms, Vibrio spp. which accounted for over 68% of clones and Pseudoalteromonas spp. accounting for 21% of the library. The dominance of these two 16S rRNA gene sequence types within the bacterioneuston clone library was confirmed in a subsequent gene probing experiment. 16S rRNA gene probes specific for these groups of bacteria were designed and used to probe new libraries of 1000 clones from both the bacterioneuston and pelagic seawater DNA samples. This revealed that 57% of clones from the bacterioneuston library hybridized to a Vibrio sp.-specific 16S rRNA gene probe and 32% hybridized to a Pseudoalteromonas sp.-specific 16S rRNA gene probe. In contrast, the pelagic seawater library resulted in only 13% and 8% of 16S rRNA gene clones hybridizing to the Vibrio sp. and Pseudoalteromonas sp. probes respectively. Results from this study suggest that the bacterioneuston contains a distinct population of bacteria and warrants further detailed study at the molecular level.  相似文献   

12.
In this experiment, DNA-ELISA biosensor was introduced, bearing the ability to detect specific bacteria in about 4?h. This is a more rapid system in comparison to conventional methods, like colony counting method. Moreover, this method does not require any amplification and directly detects genomic DNA of bacteria, giving a lower limit to the sensitivity of 40,000 bacteria. In this study, two specific probes capture (biotin labelled) and detector (dig labelled), were used against special regions of 16s rRNA gene of Escherichia coli ATCC 25922. The capture probe has the ability to trap the target bacterial DNA from a pool of other kinds of bacteria under specific conditions. The detector probe then was used to hybridize to the genome of trapped bacteria. The detection proceeds by adding HRP-anti dig enzyme and its substrate, ABTS to emit light. Light absorbance is measured for verifying the detection.  相似文献   

13.
Immunochromatographic strip test for detection of genus Cronobacter   总被引:1,自引:0,他引:1  
Members of the genus Cronobacter are opportunistic pathogens formerly known as Enterobacter sakazakii, which induce severe meningitis and sepsis in neonates and infants, with a high fatality rate. In this work, a simple and rapid immunochromatographic strip test for the detection of this pathogen was developed. Following the shortened bacteria cultivation and isolation of DNA, a specific gene sequence targeting 16S rRNA from Cronobacter spp. was amplified by PCR using 5'-end labelled specific primers. The PCR product, amplicon labelled with digoxigenin on one side and biotin on the other side, was directly added to the immunochromatographic strip test, composed of nitrocellulose membrane with bound antibody against digoxigenin in the test line. The visualization was mediated by colloidal carbon conjugated to neutravidin, and the appearance of grey/black line was indicative of the presence of specific amplicon. Colour intensity of the test line in pathogen-positive assay was visually distinguishable from that of negative sample within 10 min. The visual detection limit of PCR product was 8 ng. The specificity of the developed method was confirmed by standard microbiological techniques. Whole detection procedure with the incorporated immunostrip was applied to analysis of infant formulae samples, contaminated with less than 10 cells of Cronobacter spp. per 10 g. The results from immunochromatographic test indicated the absolute agreement with those from standard microbiological methods. Moreover, the developed procedure considerably reduced the total analysis time to 16 h whereas the reference microbiological method needs 6-7 days.  相似文献   

14.
Oligonucleotide probes covering three phylogenetically defined groups of Butyrivibrio spp. were successfully designed and tested. The specificity of each probe was examined by hybridization to rRNAs from an assortment of B. fibrisolvens isolates as well as additional ruminal and nonruminal bacteria. The sensitivity of the hybridization method was determined by using one of the probes (probe 156). When RNA was extracted from a culture of OB156, the probe was able to detect target cells at densities as low as 10(4) cells/ml. When 10(4) or more target cells/ml were added to cattle rumen samples, detectable hybridization signals were obtained with 1,000 ng of total RNA loaded onto the nylon membrane. In contrast, the sensitivity was reduced to 10(6) target cells/ml at 100 ng of RNA per slot. The probes were used to type 19 novel Butyrivibrio isolates. The phylogenetic placement was confirmed by partial 16S rRNA gene sequencing. The use of the probes in community-based studies indicated that the Butyrivibrio groups examined in this paper did not represent a significant portion of the bacterial 16S rRNA pool in the rumen of the cattle, sheep, and deer examined.  相似文献   

15.
Molecular methods based on 16S rRNA gene sequence analyses have shown that bacteria of the Clostridium leptum subgroup are predominant in the colonic microbiota of healthy humans; this subgroup includes bacteria that produce butyrate, a source of energy for intestinal epithelial cells. To improve our understanding of the species within this important group, separation methods using fluorescence-activated cell sorting (FACS) and specific PCR were combined with 16S rRNA gene sequence analyses. FACS was developed for bacteria labelled in situ with two rRNA oligonucleotide probes, namely EUB338-FITC for total bacteria and Clep866-CY5/cp or Fprau645-CY5 for bacteria of the C. leptum subgroup. Bacterial cell sorting allowed a selective recovery of members of the C. leptum subgroup from the human microbiota with efficiencies as high as 95%. Group-specific PCR amplification of the C. leptum subgroup was developed, and temporal thermal gradient gel electrophoresis showed host-specific profiles with low complexity, with a sharing of common bands between individuals and bands stable over 2 months for the same individual. A library of 16S rRNA gene cloned sequences (106 sequences) was prepared with DNA obtained from both separation methods, and 15 distinct phylotypes were identified, among which 10 have no cultivable or currently cultivated representative in reference collections.  相似文献   

16.
DNA microarray technology offers the possibility to analyze microbial communities without cultivation, thus benefiting biodiversity studies. We developed a DNA phylochip to assess phytoplankton diversity and transferred 18S rRNA probes from dot blot or fluorescent in situ hybridization (FISH) analyses to a microarray format. Similar studies with 16S rRNA probes have been done determined that in order to achieve a signal on the microarray, the 16S rRNA molecule had to be fragmented, or PCR amplicons had to be <150 bp in length to minimize the formation of a secondary structure in the molecule so that the probe could bind to the target site. We found different results with the 18S rRNA molecule. Four out of 12 FISH probes exhibited false-negative signals on the microarray; eight exhibited strong but variable signals using full-length 18S RNA molecules. A systematic investigation of the probe's accessibility to the 18S rRNA gene was made using Prymenisum parvum as the target. Fourteen additional probes identical to this target covered the regions not tested with existing FISH probes. Probes with a binding site in the first 900 bp of the gene generated positive signals. Six out of nine probes binding in the last 900 bp of the gene produced no signal. Our results suggest that although secondary structure affected probe binding, the effect is not the same for the 18S rRNA gene and the 16S rRNA gene. For the 16S rRNA gene, the secondary structure is stronger in the first half of the molecule, whereas in the 18S rRNA gene, the last half of the molecule is critical. Probe-binding sites within 18S rRNA gene molecules are important for the probe design for DNA phylochips because signal intensity appears to be correlated with the secondary structure at the binding site in this molecule. If probes are designed from the first half of the 18S rRNA molecule, then full-length 18S rRNA molecules can be used in the hybridization on the chip, avoiding the fragmentation and the necessity for the short PCR amplicons that are associated with using the 16S rRNA molecule. Thus, the 18S rRNA molecule is a more attractive molecule for use in environmental studies where some level of quantification is desired. Target size was a minor problem, whereas for 16S rRNA molecules target size rather than probe site was important.  相似文献   

17.
We assessed the microbiota of a tongue abscess in which twelve different aerobic and anaerobic bacteria were identified using fluorescent in situ hybridisation (FISH), sequencing of the 16S rRNA gene and phenotypic methods. By applying the 16S rRNA based probes directly on the clinical material, a quick insight of the bacteria present was obtained and the species which were not cultured but present in the abscess were identified.  相似文献   

18.
Oligonucleotide probes targeting the small-subunit rRNA are commonly used to detect and quantify bacteria in natural environments. We developed a PCR-based approach that allows synthesis of oligonucleotide probes targeting a variable region in the 16S rRNA without prior knowledge of the target sequence. Analysis of all 16S rRNA gene sequences in the Ribosomal Database Project database revealed two universal primer regions bracketing a variable, population-specific region. The probe synthesis is based on a two-step PCR amplification of this variable region in the 16S rRNA gene by using three universal bacterial primers. First, a double-stranded product is generated, which then serves as template in a linear amplification. After each of these steps, products are bound to magnetic beads and the primers are detached through hydrolysis of a ribonucleotide at the 3' end of the primers. This ultimately produces a single-stranded oligonucleotide of about 30 bases corresponding to the target. As probes, the oligonucleotides are highly specific and could discriminate between nucleic acids from closely and distantly related bacterial strains, including different species of VIBRIO: The method will facilitate rapid generation of oligonucleotide probes for large-scale hybridization assays such as screening of clone libraries or strain collections, ribotyping microarrays, and in situ hybridization. An additional advantage of the method is that fluorescently or radioactively labeled nucleotides can be incorporated during the second amplification, yielding intensely labeled probes.  相似文献   

19.
The copy numbers of 16S rRNA genes in 12 probiotic Lactobacillus strains of poultry origin were analyzed. Genomic DNA of the strains was digested with restriction endonucleases that do not cut within the 16S rRNA gene of the strains. This was followed by Southern hybridization with a biotinylated probe complementary to the 16S rRNA gene. The copy number of the 16S rRNA gene within a Lactobacillus species was found to be conserved. From the hybridization results, Lactobacillus salivarius I 24 was estimated to have seven copies of the 16S rRNA gene, Lactobacillus panis C 17 to have five copies and Lactobacillus gallinarum strains I 16 and I 26 four copies. The 16S rRNA gene copy numbers of L. gallinarum and L. panis reported in the present study are the first record. Lactobacillus brevis strains I 12, I 23, I 25, I 211, I 218 and Lactobacillus reuteri strains C 1, C 10, C 16 were estimated to have at least four copies of the 16S rRNA gene. In addition, distinct rRNA restriction patterns which could discriminate the strains of L. reuteri and L. gallinarum were also detected. Information on 16S rRNA gene copy number is important for physiological, evolutionary and population studies of the bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号