首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
雌激素受体(estrogen receptor,ER)是固醇类激素受体蛋白超家族的成员之一,分布于许多组织,介导了大部分已知的雌激素效应.ER主要定位于胞质中,但是近些年的研究发现在部分组织的细胞膜上也存在雌激素受体,称为“膜受体(mER)”.ER在其配体雌二醇(E2)的诱导下,可以通过“基因组”和“非基因组”两种方式介导大部分的生理效应,胞质中的ER可与DNA反应元件直接作用产生基因组效应,而mER主要通过信号分子介导雌激素的非基因组效应.该文介绍ER的结构、ER介导的非基因组效应的生理功能以及前景展望.  相似文献   

2.
类固醇激素作用的非基因组效应崔肇春(大连医科大学生化教研室,大连116027)关键词类固醇激素非基因组效应六十年代发现了类固醇激素的胞内受体,促进了类固醇激素作用机制的研究。众所周知,类固醇激素作用的途径是它直接进入细胞后,与胞内受体结合成激素-受体...  相似文献   

3.
除了经典的基因组效应以外,雌激素还可以通过细胞内信号转导途径在几分钟甚至是几秒钟内产生快速生物学效应,被称为雌激素的非基因组效应.这种雌激素的非基因组效应与基因组效应一样,也存在着组织、细胞的特异性.本文将对雌激素膜受体存在的依据、以膜ER为核心的多分子复合物的特性及其介导的信号通路以及雌激素快速生物学效应的组织/细胞特异性作一综述.  相似文献   

4.
糖皮质激素(glucocorticoid,GC)是下丘脑-垂体-肾上腺(hypothalamic-pituitary-adrenal,HPA)轴分泌的最终效应激素,通过与糖皮质激素受体(glucocorticoid receptors,GR)结合行使功能。研究发现,GC在慢性疼痛中表现双重作用,内源性GC作为抗炎类固醇通过募集免疫细胞、抑制激酶通路、调节神经胶质细胞在部分类型的神经病理性疼痛及炎性痛中发挥抑痛作用,但在应激情况下,GC水平异常升高参与中枢神经系统神经元的凋亡、兴奋、记忆等,通过调控不同的信号反应或微环境促进病理性疼痛。本文综述GC在慢性疼痛中的作用,了解其发挥镇痛或致痛的双重作用机制。  相似文献   

5.
雌激素心血管作用的研究进展   总被引:7,自引:0,他引:7  
Wang S  He RR 《生理科学进展》2001,32(4):337-339
雌激素受体广泛分布于心血管系统,具有抗心律失常作用,抗动脉粥样硬化效应和舒血管效应,并可调控动脉压力感受器反射,雌激素通过基因组机制和非基因组机制发挥心血管保护效应。  相似文献   

6.
糖皮质激素非基因组效应及其信号转导机制   总被引:2,自引:0,他引:2  
糖皮质激素具有多种重要的生理和药理作用,其经典作用途径为“基因组机制”,通过调节基因转录发挥作用.近年来,其“非基因组机制”在生理和药理学方面的作用越来越受重视.在这一作用途径中,可能有多种受体、激酶、信号分子的参与,“基因组机制”和“非基因组机制”间还可能存在交互调节,对非基因组机制进行深入研究有利于糖皮质激素的临床合理应用.  相似文献   

7.
利用离休孵育脑薄片和放射免疫测定其释放的精氨酸加压素(AVP)方法,探讨糖皮质激素(GC)在不能进入细胞内的情况下,对去肾上腺大鼠的下丘脑薄片释放AVP的快速影响及其可能的细胞膜机制。结果如下:(1)下丘脑薄片能够稳定地释放AVP(2h),其释放量为15.42±1.28pg/min;(2)牛血清白蛋白耦联皮质酮(B-BSA)对AVP的释放具有快速的(20min)抑制性效应,在10 ̄(-7)─10 ̄(-4)mol/L范围内呈剂量一效应关系;(3)GC细胞内受体拮抗剂RU486(10 ̄(-4)─10 ̄(-3)mol/L)能部分地阻断B─BSA的快速抑制效应;(4)孵育液中Ca ̄(2+)程度升高,B─BSA的快速抑制效应明显增强;反之,孵育液中无Ca ̄(2+)则B-BSA的快速抑制效应有所减弱。表明GC在未进入细胞内的情况下也可快速地抑制大鼠下丘脑薄片释放AVP,因此没有通过传统的基因组机制,而是由非基因组机制介导的,其作用部位在细胞膜水平上,可能是影响Ca ̄(2+)的跨细胞膜内流通量或/和影响有Ca ̄(2+)参与的AVP释放过程的结果。  相似文献   

8.
本研究观察了糖皮质激素自身在孤束核(NTS)内的心血管效应,以及它在NTS内对NANPY诱导的心血管活动变化的影响及机制。结果发现,大剂量地塞米松(Dex)在大鼠NTS内能很快导致血压下降,血清中NO浓度升高。小剂量Dex在NTS内能很快抑制NANPY在NTS内诱导的心血管效应,并维持较长时间。表明Dex对NANPY在NTS诱导的心血管效应的抑制作用可能有基因和非基因两种途径参与。进一步分析它的非基因机制发现这种快速抑制作用与胞内糖皮质激素受体无关,而是通过兴奋GABAA受体,降低减压反射;或者降低α2受体的敏感性,抑制NO的形成;或者直接作用于细胞膜上的离子通道以影响它们对NANPY的反应;从而抑制NANPY在NTS内诱导的降压和心率减慢的效应  相似文献   

9.
目的:研究糖皮质激素(皮质酮)对肥大细胞胞膜流动性的快速作用。方法:采用荧光偏振法检测膜流动性,检测不同浓度皮质酮对肥大细胞膜流动性的快速影响以及加用糖皮质激素受体拮抗剂RU38486看其是否影响皮质酮对肥大细胞膜流动性的快速作用。结果:与阴性对照组比较,皮质酮能够在7min内剂量依赖性地快速降低肥大细胞胞膜流动性,稳定肥大细胞胞膜(P0.01);加用糖皮质激素受体拮抗剂RU38486后能部分阻断皮质酮对肥大细胞膜流动性的快速作用(P0.01)。结论:糖皮质激素能够快速降低肥大细胞胞膜流动性,稳定肥大细胞胞膜,这一作用可能是糖皮质激素快速抑制肥大细胞脱颗粒非基因组机制作用的靶点之一。  相似文献   

10.
糖皮质激素(glucocorticoid,GC)因具有抗炎、抑制免疫反应、调节能量代谢和细胞增殖凋亡等作用而广泛使用于临床。作为非编码RNA,内源性miRNA通过影响靶基因的表达水平在机体发育和疾病发生中发挥广泛的调控作用。目前研究发现,糖皮质激素能通过糖皮质激素受体(glucocorticoid receptor,GR)介导调节miRNA的表达,而miRNA也能通过影响糖皮质激素受体的表达水平调节细胞对糖皮质激素的反应性。在许多疾病模型中,miRNA和糖皮质激素受体之间通过密切互作关系共同影响疾病的发生发展。  相似文献   

11.
类固醇激素非基因组作用的机制及意义   总被引:1,自引:0,他引:1  
现已证明各种类型的类固醇激素均能通过非基因组作用快速改变生理过程。不同的激素,或同一激素对不同的细胞,其非基因组作用的机制各不相同,多种多样,并且不时有新的机制诞生。本文将迄今为止类固醇激素快速非基因组作用的可能机制作一综述,并初步阐述其可能的意义。  相似文献   

12.
脑源性神经营养因子(brain derived neurotrophic factor,BDNF)是一个关键性的神经营养因子,它既影响突触的形成和重构,又可以通过突触前和突触后机制改变突触传递的效能,从而对神经结构和功能可塑性发挥调节作用。BDNF主要通过结合TrkB受体激活细胞内信号系统来发挥它积极的生物学效应。研究表明,中枢神经系统BDNF表达或功能的变化与抑郁症的发生相关,而应激引起糖皮质激素(glucocorticoid,GC)的增加也是导致抑郁发生的重要原因之一。值得注意的是,GCs的增加会影响BDNF,一方面GCs降低BDNF的表达,另一方面GCs受体GR与BNDF受体TrkB相互作用。过多的GCs干扰了BDNF信号,使BDNF功能受到影响,导致抑郁患者脑内,尤其是海马结构的损害。就抑郁发生中糖皮质激素对BDNF功能影响的研究进展作一介绍。  相似文献   

13.
糖皮质激素受体及其选择性调节剂研究进展   总被引:1,自引:0,他引:1  
糖皮质激素(glucocorticoids,GCs)是临床上广泛使用的一类抗炎药物,在体内主要通过糖皮质激素受体(glucocorticoid receptor,GR)发挥生理和药理作用。GR是核受体超家族的成员之一,为配体激活的转录因子,在机体的多种生理和病理活动中扮演重要的角色。随着对GR信号通路的深入研究,寻找针对糖皮质激素受体的新型调节剂,以期将抗炎作用和现有糖皮质激素的副作用相分离,已经成为新药发现的研究热点。本文对近年来GR的分子结构、生物学作用及其选择性调节剂的研究进展作一简要的介绍。  相似文献   

14.
目的:本实验通过对平滑肌细胞行GCs快速预处理,拟证实糖皮质激素对平滑肌细胞内[Ca2+]i浓度升高有快速抑制作用,并初步探讨该现象的可能分子机制。方法:原代培养的大鼠平滑肌细胞,应用Fura-2/AM显微荧光检测技术,检测肌细胞内[Ca2+]i在受到激动剂刺激后的浓度变化;比较不同浓度地塞米松预处理后10min与对照组之间游离钙上升情况的区别。用Western blot方法,分析气道平滑肌细胞内抑制型磷脂酶C(phospho-PLCβ-ser1105)含量的变化。设立RU486及CHX对照组,排除基因组作用在该反应中的影响。结果:GCs温浴10min,能够明显降低乙酰胆碱引起的ASMCs细胞内[Ca2+]i峰值。并能够明显上调ASMCs内抑制型PLC含量。这些反应不受RU486和CHX影响。结论:GCs能够通过非基因组作用快速抑制刺激物引起的气道平滑肌的收缩反应,这一效应的实现可能是通过抑制PLC分子活性,使其下游的[Ca2+]i浓度降低实现的。  相似文献   

15.
16.
Central obesity is associated with insulin resistance and dyslipidemia. Thus, the mechanisms that control fat distribution and its impact on systemic metabolism have importance for understanding the risk for diabetes and cardiovascular disease. Hypercortisolemia at the systemic (Cushing's syndrome) or local levels (due to adipose-specific overproduction via 11β-hydroxysteroid dehydrogenase 1) results in the preferential expansion of central, especially visceral fat depots. At the same time, peripheral subcutaneous depots can become depleted. The biochemical and molecular mechanisms underlying the depot-specific actions of glucocorticoids (GCs) on adipose tissue function remain poorly understood. GCs exert pleiotropic effects on adipocyte metabolic, endocrine and immune functions, and dampen adipose tissue inflammation. GCs also regulate multiple steps in the process of adipogenesis. Acting synergistically with insulin, GCs increase the expression of numerous genes involved in fat deposition. Variable effects of GC on lipolysis are reported, and GC can improve or impair insulin action depending on the experimental conditions. Thus, the net effect of GC on fat storage appears to depend on the physiologic context. The preferential effects of GC on visceral adipose tissue have been linked to higher cortisol production and glucocorticoid receptor expression, but the molecular details of the depot-dependent actions of GCs are only beginning to be understood. In addition, increasing evidence underlines the importance of circadian variations in GCs in relationship to the timing of meals for determining their anabolic actions on the adipocyte. In summary, although the molecular mechanisms remain to be fully elucidated, there is increasing evidence that GCs have multiple, depot-dependent effects on adipocyte gene expression and metabolism that promote central fat deposition. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号