首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li W  Zheng R  Jia Z  Zou Z  Lin N 《Biophysical chemistry》1997,67(1-3):281-286
Repair effects on thymine radical anion by six phenylpropanoid glycosides (PPGs), isolated from Pedicularis species, were studied using pulse radiolysis method. The thymine radical anion was produced by the reaction of hydrated electron with thymine. PPGs were added into the thymine solution saturated with N(2). Kinetic analysis showed that transient absorption spectrum of thymine radical anion formed at first, and then after several microseconds of pulse radiolysis changed to that of PPG radical anion. The evidence indicated that thymine radical anion was repaired through one-electron transfer between the radical anion and PPG. Electrophilic phenyl-substituted unsaturated carboxylic group containing in PPGs' structure was able to capture electron from thymine radical anion before it undergo reversible protonation. The reaction rate constants of electron transfer from thymine radical anion to PPGs were within 1.16-2.29 x 10(9) dm(3) mol(-1) s(-1).  相似文献   

2.
The fast reaction technique of pulse radiolysis was used to produce free radicals in aqueous solution from alcohols, deoxyribose, cytosine, uracil, thymine, dihydrothymine and histidine. The electron transfer reactions from these radicals to p-benzoquinone was observed from the formation kinetics of the semiquinone anion ·BQ? at 430 nm and the efficiency was found to be as high as 90% or more, with k~5×109 M?1sec?1. In acid or neutral solutions in the presence of oxygen the peroxy radicals ·O2RH formed do not essentially transfer an electron to BQ, and the efficiency is <10%. The significance of these results in the fixation of radiation damage in photobiology and radiation biology are indicated. The reactions of the superoxide ·O2? radical with BQ are also presented and discussed.  相似文献   

3.
Using pulse radiolysis technique, the reaction between hydroxyl radical and 7 phenylpropanoidglycosides: echinacoside, verbascoside, leucosceptoside A, martynoside, pediculariosides A, M and N which were isolated from Pedicularis were examined. The rate constants of these reactions were determined by transient absorption spectra. All 7 phenylpropanoid glycosides react with hydroxyl radical at high rate constants within (0.97-1.91)×1010L · mol-1 · s-1. suggesting that they are effective hydroxyl radical scavengers. The results demonstrate that the numbers of phenolic hydroxyl groups of phenylpropanoid glycosides are directly related to their scavenging activities. The scavenging activities are likely related to o-dihydroxy group of phenylpropanoid glycosides as well.  相似文献   

4.
Repair effect on 2'-deoxyadenosine-5'-monophosphate (dAMP) radical anions by phenylpropanoid glycosides (PPGs) and their analogs, isolated from Chinese folk medicinal herb, was studied using pulse radiolysis technique. The radical anion of dAMP was formed by the reaction of hydrated electron with dAMP. On pulse irradiation of nitrogen-saturated dAMP aqueous solution containing 0.2 M t-BuOH and one of PPGs or their analogs, the transient absorption spectrum of the radical anion of dAMP decayed with the formation of that of the radical anion of PPGs or their analogs within several decades of microseconds after electron pulse irradiation. The results indicated that dAMP radical anions can be repaired by PPGs or their analogs. The rate constants of the repair reactions were deduced to be 1.6-4.5 x 10(8) M(-1) s(-1).  相似文献   

5.
The redox properties of some dioxathiadiaza-heteropentalenes have been studied by pulse radiolysis and cyclic voltammetry. The midpoint potential at pH 7 for reduction of this class of compounds to the corresponding anion radical is comparable with the first reduction potential of the bipyridinium herbicides. The heteropentalenes act as Photosystem-I electron acceptors at concentrations of the order of 1 · 10?6 M. The herbicidal properties of the heteropentalenes are similar to those of the bipyridinium herbicides.  相似文献   

6.
Summary This study was undertaken to investigate the mechanism of chemical radiosensitization by halogenated bases incorporated into DNA. Radiation-induced base and sugar-phosphate backbone damage to 5-bromouridine-5-monophosphate (5-BrUMP) was monitored using a flow system connected in series with a recording spectrophotometer, a bromide (Br)-specific ion analyzer and a Technicon auto-sampler. The system was used to assay loss of UV-absorbing 5,6 double-bond, release of Br and inorganic phosphate (Pi) release using an automated colorimetric method, as a function of gamma-ray dose. Results obtained with radical scavengers indicate that, unlike non-halogenated nucleotides where the hydroxyl radical (· OH) is the principal damaging species, 5-BrUMP is damaged by the hydrated electron (e aq ), hydrogen atom (H·) and · OH, producing a high yield of base damage and Br and Pi release in anoxia. Another novel feature of 5-BrUMP radiolysis is that oxygen, by convertinge aq and H· to the unreactive superoxide radical anion (0 2 ), has a protective effect on both base and phosphate ester damage. Under · OH-scavenging conditions, where the radiation yield of reductive debromination is 3.8, there is some Pi release, suggesting the possibility of intramolecular hydrogen atom transfer from the sugar ring to the 5-uracilyl radical and subsequent sugar-phosphate bond cleavage. This hypothesis is supported by the action of oxygen and thiols in modifying thee aq -mediated sugar-phosphate damage.  相似文献   

7.
《Free radical research》2013,47(11):1300-1310
Abstract

Hypotaurine and cysteine sulfinic acid are known to be readily oxidized to the respective sulfonates, taurine and cysteic acid, by several oxidative agents that may be present in biological systems. In this work, the relevance of both the carbonate anion and nitrogen dioxide radicals in the oxidation of hypotaurine and cysteine sulfinic acid has been explored by the peroxidase activity of Cu,Zn superoxide dismutase (SOD) and by pulse radiolysis. The extent of sulfinate oxidation induced by the system SOD/H2O2 in the presence of bicarbonate (CO3?– generation), or nitrite (?NO2 generation) has been evaluated. Hypotaurine is efficiently oxidized by the carbonate radical anion generated by the peroxidase activity of Cu,Zn SOD. Pulse radiolysis studies have shown that the carbonate radical anion reacts with hypotaurine more rapidly (k = 1.1 × 109 M?1s?1) than nitrogen dioxide (k = 1.6 × 107 M?1s?1). Regarding cysteine sulfinic acid, it is less reactive with the carbonate radical anion (k = 5.5 × 107 M?1s?1) than hypotaurine. It has also been observed that the one-electron transfer oxidation of both sulfinates by the radicals is accompanied by the generation of transient sulfonyl radicals (RSO2?). Considering that the carbonate radical anion could be formed in vivo at high level from bicarbonate, this radical can be included in the oxidants capable of performing the last metabolic step of taurine biosynthesis. Moreover, the protective effect exerted by hypotaurine and cysteine sulfinate on the carbonate radical anion-mediated tyrosine dimerization indicates that both sulfinates have scavenging activity towards the carbonate radical anion. However, the formation of transient reactive intermediates during sulfinate oxidation by carbonate anion and nitrogen dioxide radical may at the same time promote oxidative reactions.  相似文献   

8.
Nitric oxide (NO·) is a free radical characterized by a high spontaneous chemical reactivity with many other molecules including the superoxide radical (O2·). This complex interaction may generate a peroxynitrite anion (ONOO), which behaves as an important mediator of oxidative stress in many pathological states. In the present study, in vitro experiments were performed to assess directly the O2· and hydroxyl (·OH) radical scavenging effects of various NO· donor drugs, i.e. sodium nitroprusside (SNP), sodium nitrite (NaNO2), molsidomine and SIN 1, at pH 7.4, 7 or 6. Concentrations of NO· in the incubation medium containing the different NO· donor drugs were measured by the assay based on the reaction of Fe-N-methyl-D-glucamine dithiocarbamate (MGD) with NO· that yields a stable spin-adduct measured by electron paramagnetic resonance (EPR). O2· and ·OH generation was characterized by EPR spin trapping techniques, using the spin trap 5,5-dimethyl-1-pyrroline-1-oxide (DMPO). These free radicals were generated from the enzymatic system xanthine-xanthine oxidase, in phosphate buffer adjusted at pH 7.4, 7 and 6. Under these experimental conditions, SNP exhibited the strongest superoxide scavenging properties, characterized by IC50 values expressed in the µmolar range, which decreased at low pH. Addition of SNP (800 µM) to solution containing MGD and Fe2+ (5:1) at pH 7 4 produced a three line EPR spectrum which is identified to [(MGD)2-Fe2+-NO]. In control experiments no EPR signal was observed. We obtained the same results with NaNO2 and an augmentation of the spin-adduct level was noted with the prolongation of the incubation period. In return, molsidomine (2 mM) did not produce, in our conditions, a detectable production of NO·. NaNO2 displayed a significant superoxide scavenging effect only at pH 6, whilst neither molsidomine nor SIN 1 had any effect. Therefore, the superoxide scavenging properties of SNP, NaNO2, and molsidomine appeared to be closely related to their potential for NO· release, which partially depends on the pH conditions. The behaviour of SIN 1 is more complicated, the speed of oxygen diffusion probably acting as a limiting factor in NO· formation in our conditions. The production of NO· was detected in presence of SIN 1. The intensity of the complex is comparable with the signal founded with NaNO2. By contrast, all molecules exhibited hydroxyl radical scavenging properties, highlighting the capacity of ·OH to react with a wide range of molecules. In conclusion, considering the poor chemical reactivity of O2·, the NO· donor drugs/O2· interactions suggest a special relationship between these two radical species, which, in certain pathological states, could lead to the generation of cytotoxic end-products with strong oxidizing properties.  相似文献   

9.
Repair effects of rutin and quercetin on purine deoxynucleotide radical cations were studied using pulse radiolysis technique. On electron pulse irradiation of N2 saturated deoxynucleotide aqueous solution containing 20 mmol/L K2S2O8, 200 mmol/Lt-BuOH and rutin or quercetin, the transient absorption spectra of the deoxynucleotide radical cations decayed quickly. At the same time, the spectra of flavonoid phenoxyl radicals formed within several dozen microseconds. The results indicated that deoxynucleotide radical cations can be repaired by flavonoids. The rate constants of the repair reactions were 3.8 ×108-4.4 ×108 mol−1 · L · s−1 and 1.3×108-1.8×108 mol−1 · L · s−1 for dAMP and dGMP radical cations, respectively.  相似文献   

10.
By a technique of radiation chemistry, one can convert small groups on a protein (surface disulfide bonds) into reactive centers (disulfide anion radicals) in less than 100 μs. The reactive centers on different molecules then proceed to react with each other and are destroyed. The anion radical is formed by electron transfer from transient CO2? generated by pulse radiolysis (Adams et al., 1972). The formation and decay of the disulfide anion radical were studied by monitoring its absorption at 410 nm. The transient disulfide anion absorption is a reliable qualitative but not quantitative test for the presence of surface disulfide groups.The area of this reactive center is very small compared to the total surface area of the protein. Nevertheless the rate of this reaction for 13 proteins ranges from 2% to 50% of the diffusion controlled rate of 3 × 109m?1 s?1. Billiard ball type collisions during which the protein molecules briefly touch each other do not account for these fast rates. We conclude that the collision has substantial duration. A radially symmetric potential holds the molecules together but allows them to roll on each others' surfaces. The model of Sole & Stockmayer (1973) can be applied to this reaction, showing that the collision duration is typically 10 to 100 μs. This conclusion, valid for 12 of 13 proteins studied, seems to be very general. Whenever two proteins approach each other, attractive forces hold them together long enough for mutual rotation to bring the reactive groups into contact, a necessary but sometimes not sufficient condition for their reaction.  相似文献   

11.
Repair effects of rutin and quercetin on purine deoxynucleotide radical cations were studied using pulse radiolysis technique. On electron pulse irradiation of N2 saturated deoxynucleotide aqueous solution containing 20 mmol/L K2S2O8, 200 mmol/L f-BuOH and rutin or quercetin, the transient absorption spectra of the deoxynucleotide radical cations decayed quickly. At the same time, the spectra of flavonoid phenoxyl radicals formed within several dozen microseconds. The results indicated that deoxynucleotide radical cations can be repaired by flavonoids. The rate constants of the repair reactions were 3.8 × 108-4.4×108 mol-1 · L · s-1 and 1.3×108-1.8×108 mol-1 · L · s-1 for dAMP and dGMP radical cations, respectively.  相似文献   

12.
Summary

Using the pulse radiolysis technique, absolute rate constants have been obtained for the reaction of captopril with several free radicals. The results demonstrate that although captopril reacts rapidly with a number of free radicals, such as the hydroxyl radical (k = 5.1 × 109 dm?3mol?1s?1) and the thiocyanate radical anion (k = 1.3 × 107 dm?3mol?1s?1), it is not exceptional in this ability. Similarly, the reactions with carbon centred radicals although rapid are an order of magnitude slower than those observed with glutathione. Additional lipid peroxidation studies further demonstrate that captopril is a much less effective antioxidant than glutathione. The data go some way to supporting the view that any attenuation of reperfusion injury by captopril is not through a direct free radical scavenging mechanism but may be afforded by other, non-radical-mediated mechanisms.  相似文献   

13.
Using the spin trapping technique, the interaction between fulvic acids (FAs) of different origins and the active oxygen radicals was studied. The active oxygen radicals under study included superoxide anion (O2 · -) produced by xanthine oxidase (XOD) and stimulated polymorphonuclear leukocytes (PMN) of human being and hydroxyl radical ( ·OH) produced from Fenton's reaction. It has been found that the FAs from both Kaschin-Beck disease (KBD) region and non-KBD region can accelerate the production of ·OH and scavenge O2 ·- . FA from peat can scavenge both O2·- and ·OH. The results show that the behavior of KBD and non-KBD FAs differs clearly from peat FA. It has been concluded that the superoxidation damage of KBD induced by FA is mainly due to hydroxyl radical reaction initiated in biological system.  相似文献   

14.
Gnidia glauca and Dioscorea bulbifera are traditional medicinal plants that can be considered as sources of natural antioxidants. Herein we report the phytochemical analysis and free radical scavenging activity of their sequential extracts. Phenolic and flavonoid content were determined. Scavenging activity was checked against pulse radiolysis generated ABTS•+ and OH radical, in addition to DPPH, superoxide and hydroxyl radicals by biochemical methods followed by principal component analysis. G. glauca leaf extracts were rich in phenolic and flavonoid content. Ethyl acetate extract of D. bulbifera bulbs and methanol extract of G. glauca stem exhibited excellent scavenging of pulse radiolysis generated ABTS•+ radical with a second order rate constant of 2.33×106 and 1.72×106, respectively. Similarly, methanol extract of G. glauca flower and ethyl acetate extract of D. bulbifera bulb with second order rate constants of 4.48×106 and 4.46×106 were found to be potent scavengers of pulse radiolysis generated OH radical. G. glauca leaf and stem showed excellent reducing activity and free radical scavenging activity. HPTLC fingerprinting, carried out in mobile phase, chloroform: toluene: ethanol (4: 4: 1, v/v) showed presence of florescent compound at 366 nm as well as UV active compound at 254 nm. GC-TOF-MS analysis revealed the predominance of diphenyl sulfone as major compound in G. glauca. Significant levels of n-hexadecanoic acid and octadecanoic acid were also present. Diosgenin (C27H42O3) and diosgenin (3á,25R) acetate were present as major phytoconstituents in the extracts of D. bulbifera. G. glauca and D. bulbifera contain significant amounts of phytochemicals with antioxidative properties that can be exploited as a potential source for herbal remedy for oxidative stress induced diseases. These results rationalize further investigation in the potential discovery of new natural bioactive principles from these two important medicinal plants.  相似文献   

15.
The oxidation of proteins and other macromolecules by radical species under conditions of oxidative stress can be modulated by antioxidant compounds. Decreased levels of the antioxidants glutathione and ascorbate have been documented in oxidative stress-related diseases. A radical generated on the surface of a protein can: (1) be immediately and fully repaired by direct reaction with an antioxidant; (2) react with dioxygen to form the corresponding peroxyl radical; or (3) undergo intramolecular long range electron transfer to relocate the free electron to another amino acid residue. In pulse radiolysis studies, in vitro production of the initial radical on a protein is conveniently made at a tryptophan residue, and electron transfer often leads ultimately to residence of the unpaired electron on a tyrosine residue. We review here the kinetics data for reactions of the antioxidants glutathione, selenocysteine, and ascorbate with tryptophanyl and tyrosyl radicals as free amino acids in model compounds and proteins. Glutathione repairs a tryptophanyl radical in lysozyme with a rate constant of (1.05 ± 0.05) × 105 M–1 s–1, while ascorbate repairs tryptophanyl and tyrosyl radicals ca. 3 orders of magnitude faster. The in vitro reaction of glutathione with these radicals is too slow to prevent formation of peroxyl radicals, which become reduced by glutathione to hydroperoxides; the resulting glutathione thiyl radical is capable of further radical generation by hydrogen abstraction. Although physiologically not significant, selenoglutathione reduces tyrosyl radicals as fast as ascorbate. The reaction of protein radicals formed on insulin, β-lactoglobulin, pepsin, chymotrypsin and bovine serum albumin with ascorbate is relatively rapid, competes with the reaction with dioxygen, and the relatively innocuous ascorbyl radical is formed. On the basis of these kinetics data, we suggest that reductive repair of protein radicals may contribute to the well-documented depletion of ascorbate in living organisms subjected to oxidative stress.  相似文献   

16.
A slow, long range electron transfer (SLRET) in human serum albumin (HSA) is observed from an intact tyrosine (Tyr) residue to the neutral tryptophan (Trp) radical (Trp·) generated in pulse radiolysis. This radical is formed, at neutral pH, through oxidation with Br2·− radical anions of the single Trp 214 present. The SLRET rate constant of ~0.2 s−1 determined is independent of HSA concentration and radiation dose, consistent with an intra-molecular process. This is the slowest rate constant so far reported for an intra-molecular LRET. In sharp contrast with the LRET reported for other proteins, the SLRET observed here is insensitive to oxygen, suggesting that the oxidized Trp is inaccessible to—or do not react with radiolytically generated O2·−. In N2O-saturated solutions, the SLRET is inhibited by Cu2+ ions bound to the His 3 residue of the N-terminal group of HSA but it is partially restored in O2-saturated solutions.  相似文献   

17.
P.S. Rao  E. Hayon 《BBA》1973,292(3):516-533
A large number of biologically-important organic and inorganic free radicals have been produced in aqueous solutions, using the fast-reaction technique of pulse radiolysis and kinetic absorption spectrophotometry. The reactions of these free radicals with menaquinone (vitamin K3, E0 = 0.42 V) were followed by observing the formation kinetics of the semiquinone radical anion of menaquinone, •MK. The absorption spectrum of •MK has maxima at 395 nm and 300 nm, with extinction coefficients of 1.1·104 and 1.25·104 M−1·cm−1, respectively. The pKa of the radical •MK-H+ is 4.6±0.1. The free radicals were produced by a one-electron oxidation or reduction of various compounds by hydroxyl radicals and solvated electrons, eaq. Alcohols, sugars, carboxylic acids, amino acids, peptides, aliphatic amines and amides, aromatic and heterocyclic molecules, pyridine derivatives (nicotinamide, NAD+), and transition metal ions have been examined. Significant differences have been observed in both the efficiency (expressed in percentage) and the rate constants of the electron transfer reactions from these free radicals to menaquinone. Absolute rates of electron transfer from approx. 5·108–5·109 M−1·s−1 have been observed for most of the free radicals studied. Information relating to the nature of the radicals and the acid-base properties of these radicals for effective one-electron redox reactions with quinones is indicated.  相似文献   

18.
The reactions of the NAD radical (NAD.) with ferric horseradish peroxidase and with compounds I and II were investigated by pulse radiolysis. NAD. reacted with the ferric enzyme and with compound I to form the ferrous enzyme and compound II with second-order rate constants of 8 X 10(8) and 1.5 X 10(8) M-1 s-1, respectively, at pH 7.0. In contrast, no reaction of NAD. with native compound II at pH 10.0 nor with diacetyldeutero-compound II at pH 5.0-8.0 could be detected. Other reducing species generated by pulse radiolysis, such as hydrated electron (eaq-), superoxide anion (O2-), and benzoate anion radical, could not reduce compound II of the enzyme to the ferric state, although the methylviologen radical reduced it. The results are discussed in relation to the mechanism of catalysis of the one-electron oxidation of substrates by peroxidase.  相似文献   

19.
Several studies indicate the presence of hydroxyl radical (OH·) as well as its involvement in the myocardial reperfusion injury. A transition metal-like iron is necessary for the conversion of superoxide anion (O2 ) to a highly reactive and cytotoxic hydroxyl radical (OH·). In the present study, we have examined the generation of OH· and free iron in reperfused hearts following either normothermic (37°C) or hypothermic ischemia (5°C). Employing the Langendorff technique, isolated rat hearts were subjected to global ischemia for 30 min at 37°C or 5°C and were then reperfused for 15 min at 37°C. The results of the study suggest that both the OH· generation in myocardium and free iron release into perfusate were significantly lower in hearts made ischemic at 5°C as compared to 37°C. Release of myoglobin and lactic acid dehydrogenase into perfusate also followed a similar pattern. Furthermore, in in vitro studies, chemically generated O2 at 5°C caused a significantly lower rate of oxidation of oxymyoglobin as well as generation of OH° and free iron as compared to 37°C. These results suggest that (1) reperfusion of hypothermic ischemic heart is associated with a reduction in the generation of OH· and cellular damage compared to that of normothermic ischemic heart, and (2) myoglobin, an intracellular protein, is a source of free iron and plays a role in the reperfusion injury mediated by free radicals.Abbreviations OH· hydroxyl radical - O2 superoxide anion - ODFR oxygen-derived free radicals - KHB Krebs-Henseleit buffer - LDH lactate hydrogenase - SOD superoxide dismutase  相似文献   

20.
Radiation chemical studies of thioesculetin (1), a thioketone derivative of coumarin, were performed by both pulse radiolysis technique and DFT calculations. Hydroxyl (?OH) radical reaction with 1 resulted transients absorbing at 320, 360 and 500?nm. To identify the nature of the transients, the reaction was studied with specific one-electron oxidant (N3?) radical, where 360?nm band was absent. The transient absorption at 500?nm was concentration-dependent. The overall impression for ?OH radical reaction was that the transient absorbing at 320, 360 and 500?nm was due to sulphur centred monomer radical, hydroxysulfuranyl and dimer radical of 1 respectively. The equilibrium constant between the monomer to dimer radical was 3.75?×?104 M?1. From the transients’ redox nature, it was observed that 57 and 24% of ?OH radical yielded to oxidising and reducing products respectively. Further, the product analysis by HPLC suggested that the dimer radical disproportionate to esculetin and thioesculetin. DFT energy calculation for all the possible transients revealed that dimer radical has the lowest energy. The HOMO of 1 and its monomer radical suggested that the electron density was localised on the sulphur atom. The bond length between the two sulphur atoms in dimer radical was 2.88 Å which was less than the van der Waals distance. Bond order between the two sulphur atoms was 0.55, suggesting that the bond was two centre three electron (2c–3e). From TD-DFT calculation, the electronic transition of dimer radical was at 479?nm which was in close agreement with the experimental value. The nature of the electronic transition was σ → σ* from a 2c???3e bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号