首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Repair effect on 2'-deoxyadenosine-5'-monophosphate (dAMP) radical anions by phenylpropanoid glycosides (PPGs) and their analogs, isolated from Chinese folk medicinal herb, was studied using pulse radiolysis technique. The radical anion of dAMP was formed by the reaction of hydrated electron with dAMP. On pulse irradiation of nitrogen-saturated dAMP aqueous solution containing 0.2 M t-BuOH and one of PPGs or their analogs, the transient absorption spectrum of the radical anion of dAMP decayed with the formation of that of the radical anion of PPGs or their analogs within several decades of microseconds after electron pulse irradiation. The results indicated that dAMP radical anions can be repaired by PPGs or their analogs. The rate constants of the repair reactions were deduced to be 1.6-4.5 x 10(8) M(-1) s(-1).  相似文献   

2.
Repair activities of thymine radical anion by echinocoside, isolated from Pedicularis plicata. were studied using pulse radiolysis technique. The thymine radical anion was produced by the reaction of hydrated electron with thymine. Echinocoside. one of the polyphenols of phenylpropanoid glycoside, was added to the thymine aqueous solution saturated with N2. Kinetic analysis by transient absorption spectrum showed that thymine radical anion was formed at first, and then after several decades of microseconds of pulse radiolysis. the spectrum of thymine radical anion was changed to that of echinocoside radical anion. The evidence indicated that thymine radical anion was repaired through one-electron-transfer between the DNA base radical anion and echinocoside. The rate constant of electron transfer by echinocoside was 1.45× 109 dm3 · mol1 · s 1.  相似文献   

3.
Shi Y  Kang J  Lin W  Fan P  Jia Z  Yao S  Wang W  Zheng R 《Biochimica et biophysica acta》1999,1472(1-2):279-289
The repair effects on deoxynucleotide radical cations of phenylpropanoid glycosides (PPGs) and their analogs, isolated from a Chinese folk medicinal herb, were studied using the pulse radiolysis technique. The radical cations of deoxynucleotides were formed by the reaction of SO4*- with deoxynucleotides. On pulse irradiation of a nitrogen saturated deoxynucleotide aqueous solution containing 20 mM K2S2O8, 200 mM t-BuOH and one of the PPGs or their analogs, the transient absorption spectra of the radical cations of nucleotide decayed with the formation of those of the radical cation of PPGs or their analogs within several tens of microseconds after electron pulse irradiation. The result indicates that deoxynucleotide radical cations can be repaired by PPGs or their analogs. The rate constants of the repair reactions were determined to be 0.48-1.1 x 10(9), 0.64-1.80 x 10(9) and 2.12-4.4 x 10(9) M(-1) s(-1) for dAMP, dGMP and dCMP radical cations respectively. It is obvious that the rate constants of the repair reaction depend on the number of phenolic hydroxyl groups contained in the PPGs and their analogs. A deeper understanding of this new repair mechanism will undoubtedly help researchers design strategies to prevent and/or intervene more effective in free radical related diseases.  相似文献   

4.
E Cadenas  G Merényi  J Lind 《FEBS letters》1989,253(1-2):235-238
The reaction between the phenoxyl radical of Trolox C, a water-soluble vitamin E analogue, and superoxide anion radical was examined by using the pulse radiolysis technique. The results indicate that the Trolox C phenoxyl radical may undergo a rapid one-electron transfer from superoxide radical [k = (4.5 +/- 0.5) x 10(8) M-1.S-1] to its reduced form. This finding indicates that superoxide radical might play a role in the repair of vitamin e phenoxyl radical.  相似文献   

5.
Pan J  Lin W  Wang W  Han Z  Lu C  Yao S  Lin N  Zhu D 《Biophysical chemistry》2001,89(2-3):193-199
By use of pulse radiolysis techniques, the radical cations of purine nucleotides have been successfully produced by the SO4- ion oxidation. Time-resolved spectroscopic evidence is provided that the one-electron-oxidized radicals of dAMP and dGMP can be efficiently repaired by aromatic amino acids (including tyrosine and tryptophan) via electron transfer reaction. As a model peptide, Arg-Tyr-AcOH was also investigated with regard to its interaction with deprotonated purine radical cations. The rate constants of the electron transfer reactions were determined to be (1 approximately 5) x 10(8) dm(3) mol(-1) s(-1). These results suggest that the aromatic amino acids in DNA-associated proteins may play some role in electron transfer reactions through DNA.  相似文献   

6.
Phenylpropanoid glycosides (PPGs) are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w), several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%–35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B) as a biocatalyst with 40%–60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT) calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET). The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols.  相似文献   

7.
Kobayashi K  Tagawa S  Mogi T 《Biochemistry》2000,39(50):15620-15625
To elucidate a unique mechanism for the quinol oxidation in the Escherichia coli cytochrome bo, we applied pulse radiolysis technique to the wild-type enzyme with or without a single bound ubiquinone-8 at the high-affinity quinone binding site (Q(H)), using N-methylnicotinamide (NMA) as an electron mediator. With the ubiquinone bound enzyme, the reduction of the oxidase occurred in two phases as judged from kinetic difference spectra. In the faster phase, the transient species with an absorption maximum at 440 nm, a characteristic of the formation of ubisemiquinone anion radical, appeared within 10 micros after pulse radiolysis. In the slower phase, a decrease of absorption at 440 nm was accompanied by an increase of absorption at 428 and 561 nm, characteristic of the reduced form. In contrast, with the bound ubiquinone-8-free wild-type enzyme, NMA radicals directly reduced hemes b and o, though the reduction yield was low. These results indicate that a pathway for an intramolecular electron transfer from ubisemiquinone anion radical at the Q(H) site to heme b exists in cytochrome bo. The first-order rate constant of this process was calculated to be 1.5 x 10(3) s(-1) and is comparable to a turnover rate for ubiquinol-1. The rate constant for the intramolecular electron transfer decreased considerably with increasing pH, though the yields of the formation of ubisemiquinone anion radical and the subsequent reduction of the hemes were not affected. The pH profile was tightly linked to the stability of the bound ubisemiquinone in cytochrome bo [Ingledew, W. J., Ohnishi, T., and Salerno, J. C. (1995) Eur. J. Biochem. 227, 903-908], indicating that electron transfer from the bound ubisemiquinone at the Q(H) site to the hemes slows down at the alkaline pH where the bound ubisemiquinone can be stabilized. These findings are consistent with our previous proposal that the bound ubiquinone at the Q(H) site mediates electron transfer from the low-affinity quinol oxidation site in subunit II to low-spin heme b in subunit I.  相似文献   

8.
The fast reaction technique of pulse radiolysis was used to produce free radicals in aqueous solution from alcohols, deoxyribose, cytosine, uracil, thymine, dihydrothymine and histidine. The electron transfer reactions from these radicals to p-benzoquinone was observed from the formation kinetics of the semiquinone anion ·BQ? at 430 nm and the efficiency was found to be as high as 90% or more, with k~5×109 M?1sec?1. In acid or neutral solutions in the presence of oxygen the peroxy radicals ·O2RH formed do not essentially transfer an electron to BQ, and the efficiency is <10%. The significance of these results in the fixation of radiation damage in photobiology and radiation biology are indicated. The reactions of the superoxide ·O2? radical with BQ are also presented and discussed.  相似文献   

9.
The reactions of the NAD radical (NAD.) with ferric horseradish peroxidase and with compounds I and II were investigated by pulse radiolysis. NAD. reacted with the ferric enzyme and with compound I to form the ferrous enzyme and compound II with second-order rate constants of 8 X 10(8) and 1.5 X 10(8) M-1 s-1, respectively, at pH 7.0. In contrast, no reaction of NAD. with native compound II at pH 10.0 nor with diacetyldeutero-compound II at pH 5.0-8.0 could be detected. Other reducing species generated by pulse radiolysis, such as hydrated electron (eaq-), superoxide anion (O2-), and benzoate anion radical, could not reduce compound II of the enzyme to the ferric state, although the methylviologen radical reduced it. The results are discussed in relation to the mechanism of catalysis of the one-electron oxidation of substrates by peroxidase.  相似文献   

10.
The bifunctional hypoxia-specific cytotoxin RB90745, has a nitroimidazole moiety attached to an imidazo[1,2,-a]quinoxaline mono-N-oxide with a spacer/linking group. The reduction chemistry of the drug was studied by pulse radiolysis using the one electron reductant CO2˙-. As N-oxides and nitro compounds react with CO2˙- at diffusion controlled rates, initial reaction produced a mixture of the nitro radical (λmax 410 nm) and the N-oxide radical (λmax 550 nm) in a few microseconds. Subsequently an intramolecular electron transfer (IET) was observed (k = 1.0 ± 0.25 × 103 s-1 at pH 5-9), from the N-oxide to the more electron-affinic nitro group. This was confirmed by the first order decay rate of the radical at 550 nm and formation at 410 nm, which was independent of both the concentration of the parent compound and the radicals. The rates of electron transfer and the decay kinetics of the nitro anion radicals were pH dependent and three different pKaS could be estimated for the one electron reduced species: 5.6 (nitroimidazole group) and 4.3, and 7.6 (N-oxide function). The radicals react with oxygen with rate constants of 3.1 × 107 and 2.8 × 106 dm3 mol-1 s-1 observed at 575 nm and 410 nm respectively. Steady state radiolysis studies indicated four electron stoichiometry for the reduction of the compound.  相似文献   

11.
Shi Y  Lin W  Fan B  Jia Z  Yao S  Kang J  Wang W  Zheng R 《Biochimica et biophysica acta》1999,1472(1-2):115-127
DNA damaged by oxygen radicals has been implicated as a causative event in a number of degenerative diseases, including cancer and aging. So it is very significant to look for ways in which either oxygen radicals are scavenged prior to DNA damage or damaged DNA is repaired to supplement the cells' inadequate repair capacity. The repair activities and reaction mechanism of phenylpropanoid glycosides (PPGs) and their derivatives, isolated from Chinese folk medicinal herbs, towards both dGMP-OH* adducts and dAMP-OH* adducts were studied with the pulse radiolytic technique. On pulse irradiation of nitrous oxide saturated 2 mM dGMP or dAMP aqueous solution containing one of the PPGs or their derivatives, the transient absorption spectra of the hydroxyl adduct of dGMP or dAMP decayed with the formation of that of phenoxyl radicals of PPGs or their derivatives within several decades of microseconds after electron pulse irradiation. The result indicated that dGMP or dAMP hydroxyl adducts can be repaired by PPGs or their derivatives. The rate constants of the repair reactions were deduced to be 0.641-1.28 x 10(9) M(-1) s(-1) for dGMP-OH* and 0.2-0.491 x 10(9) M(-1) s(-1) for dAMP-OH*, which positively correlated to the number of phenolic hydroxyl groups in the glycoside structure. A deeper understanding of this new repair mechanism may help researchers to design strategies to prevent and/or intervene more effectively in free radical related diseases.  相似文献   

12.
Time-resolved in situ radiolysis ESR (electron spin resonance, equivalently EPR, electron paramagnetic resonance) studies have shown that the scavenging of radiolytically produced hydroxyl radical in nitrous oxide-saturated aqueous solutions containing 2 mM DMPO is essentially quantitative (94% of the theoretical yield) at 100 micros after the electron pulse [1]. This result appeared to conflict with earlier results using continuous cobalt-60 gamma radiolysis and hydrogen peroxide photolysis, where factors of 35 and 33% were obtained, respectively [2,3]. To investigate this discrepancy, nitrogen-saturated aqueous solutions containing 15 mM DMPO were cobalt-60 gamma irradiated (dose rate = 223 Gy/min) for periods of 0.25-6 min, and ESR absorption spectra were observed approximately 30 s after irradiation. A rapid, pseudo-first-order termination reaction of the protonated DMPO-hydrated electron adduct (DMPO-H) with DMPO-OH was observed for the first time. The rate constant for the reaction of DMPO-H with DMPO-OH is 2.44 x 10(2) (+/- 2.2 x 10(1)) M(-1) s(-1). In low-dose radiolysis experiments, this reaction lowers the observed yield of DMPO-OH to 44% of the radiation-chemical OH radical yield (G = 2.8), in good agreement with the earlier results [2,3]. In the absence of the DMPO-H radical, the DMPO-OH exhibits second-order radical termination kinetics, 2k(T) = 22 (+/- 2) M(-1) s(-1) at initial DMPO-OH concentrations > or = 13 microM, with first-order termination kinetics observed at lower concentrations, in agreement with earlier literature reports [4].  相似文献   

13.
The electron transfer reactions between the trichloromethylperoxyl radical (Cl3COO·) and hydroxycinnamic acid derivatives, including chlorogenic acid, sinapic acid, caffeic acid, ferulic acid and 3,4-(methylenedioxy)cinnamic acid, have been studied by pulse radiolysis. The hydroxycinnamic acid derivatives, especially sinapic acid, are identified as good antioxidants for reduction of Cl3COO· via electron transfer reactions. From buildup kinetic analysis of phenoxyl radical, the rate constant for reaction of Cl3COO· with sinapic acid has been determined to be 8.2 × 107 dm3 mol-1 s-1, while the rate constants of electron transfer from other hydroxycinnamic acid derivatives to Cl3COO· were obtained to be about 2 × 107dm3 mol-1 s-1. The reaction of 3,4-(methylenedioxy)cinnamic acid with Cl3COO· was investigated as an evidence for the electron transfer mechanism.  相似文献   

14.
1. Hydrated electrons, produced by pulse radiolysis react with porphyrin cytochrome c with a bimolecular rate constant of 3-10(10) M-1 S-1 at 21 degrees C and pH 7.4. 2. After the reduction step an absorbance change with a half-life of 5 microns is observed with the spectral range of 430-470 nm. A relatively stable intermediate then decays with a half-life of 15 s. 3. The spectrum of the intermediate observed 50 microns after the generation of hydrated electrons shows a broad absorption band between 600 and 700 nm and a peak at 408 nm. The spectrum is attributed to the protonated form of an initially produced porphyrin anion radical. 4. Reduced porphyrin cytochrome c reacts with ferricytochrome c with a bimolecular constant of 2-10(5) M-1- S-1 in 2 mM phosphate pH 7.4, at 21 degrees C and of 2 - 10(6) M-1-S-1 under the same conditions but at 1 M ionic strength. It is proposed that electron transfer in an analogous exchange reaction between ferrocytochrome c and ferricytochrome c occurs via the exposed part of the haem.  相似文献   

15.
Electron transfer within rat neuronal nitric-oxide synthase (nNOS) was investigated by pulse radiolysis. Radiolytically generated 1-methyl-3-carbamoyl pyridinium (MCP) radical was found to react predominantly with the heme of the enzyme with a second-order rate constant for heme reduction of 3 x 10(8) m(-1) s(-1). In the calmodulin (CaM)-bound enzyme a subsequent first-order phase was observed which had a rate constant of 1.2 x 10(3) s(-1). In the absence of CaM, this phase was absent. Kinetic difference spectra for nNOS reduction indicated that the second phase consisted of heme reoxidation accompanied by formation of a neutral flavin semiquinone, suggesting that it is heme to flavin electron transfer. Experiments with the heme proximal surface mutant, K423E, had no second phase, confirming that the mutation blocks interdomain electron transfer. With the autoinhibitory loop deletion mutant, Delta40, the slow phase was observed even in the absence of CaM consistent with the role of the loop in impeding interdomain electron transfer. The rate of heme to FMN electron transfer observed in the wild-type enzyme is approximately 1000 times faster than the FMN to heme electron transfer rate predicted during catalysis from kinetic modeling, suggesting that the catalytic process is slowed by kinetic gating.  相似文献   

16.
Rate constants and activation parameters have been determined for the internal electron transfer from type 1 (T1) to type 3 (T3) copper ions in laccase from both the fungus Trametes hirsuta and the lacquer tree Rhus vernicifera, using the pulse radiolysis method. The rate constant at 298 K and the enthalpy and entropy of activation were 25 ± 1 s(-1), 39.7 ± 5.0 kJ·mol(-1) and -87 ± 9 J·mol(-1) ·K(-1) for the fungal enzyme and 1.1 ± 0.1 s(-1), 9.8 ± 0.2 kJ·mol(-1) and -211 ± 3 J·mol(-1) ·K(-1) for the tree enzyme. The initial reduction of the T1 site by pulse radiolytically produced radicals was direct in the case of T. hirsuta laccase, but occured indirectly via a disulfide radical in R. vernicifera. The equilibrium constant that characterizes the electron transfer from T1 to T3 copper ions was 0.4 for T. hirsuta laccase and 1.5 for R. vernicifera laccase, leading to full reduction of the T1 site occurring at 2.9 ± 0.2 electron equivalents for T. hirsuta and 4 electron equivalents for R. vernicifera laccase. These results were compared with each other and with those for the same process in other multicopper oxidases, ascorbate oxidase and Streptomyces coelicolor laccase, using available structural information and electron transfer theory.  相似文献   

17.
Oxidation of tyrosine moieties by radicals involved in lipid peroxidation is of current interest; while a rate constant has been reported for reaction of lipid peroxyl radicals with a tyrosine model, little is known about the reaction between tyrosine and alkoxyl radicals (also intermediates in the lipid peroxidation chain reaction). In this study, the reaction between a model alkoxyl radical, the tert-butoxyl radical and tyrosine was followed using steady-state and pulse radiolysis. Acetone, a product of the β-fragmentation of the tert-butoxyl radical, was measured; the yield was reduced by the presence of tyrosine in a concentration- and pH-dependent manner. From these data, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 6 ± 1 × 10(7) M(-1) s(-1) at pH 10. Tyrosine phenoxyl radicals were also monitored directly by kinetic spectrophotometry following generation of tert-butoxyl radicals by pulse radiolysis of solutions containing tyrosine. From the yield of tyrosyl radicals (measured before they decayed) as a function of tyrosine concentration, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 7 ± 3 × 10(7) M(-1) s(-1) at pH 10 (the reaction was not observable at pH 7). We conclude that reaction involves oxidation of tyrosine phenolate rather than undissociated phenol; since the pK(a) of phenolic hydroxyl dissociation in tyrosine is ≈ 10.3, this infers a much lower rate constant, about 3 × 10(5) M(-1) s(-1), for the reaction between this alkoxyl radical and tyrosine at pH 7.4.  相似文献   

18.
The reaction of hydroxyl radical with 1 phenylpropanoid glycoside (PPG), cistanoside C, and its 3 derivatives: 1-0-β-D-2-(p-hydroxyphenyl)-ethanyl-glucose, 6-O-(E)-femloyl-glucose and 6-O-(E)-p-hydroxy-cinnarnoylglucose isolated from folk medicinal herbs was investigated by pulse radiolysis technique respectively. The reaction rate constants were determined by analysis of built-up trace of absorption at λmax of specific transient absorption spectra of PPG and its derivatives upon attacking · OH. All four compounds react with · OH at close to diffusion controlled rate (1. 03 × 109-19.139 × 109 L · mol−1 · s−1), suggesting that they are effective · OH scavengers. The results demonstrated that the numbers of phenolic hydroxyl groups of PPG and its derivatives are directly related to their scavenging activities. By comparing the reaction rates of · OH with 1-O-β-D-2-(p-hydroxyphenyl)-ethanyl-glucose, 6-O-(E)-feruloyl-glucose or 6-O-(E)-p-hydroxy-cinnomoyl-glucose, it is evident that the phenylethyl group is more impofiant than phenylacryloyl group for scavenging · OH.  相似文献   

19.
Lu C  Yao S  Han Z  Lin W  Wang W  Zhang W  Lin N 《Biophysical chemistry》2000,85(1):17-24
Using the techniques of pulse radiolysis with time-resolved spectrophotometric detection, it has been demonstrated that the interaction of reducing OH radical adducts of dCMP, TMP and UMP with riboflavin (RF) and flavin adenine dinucleotide (FAD) does proceed via an electron transfer reaction. From buildup kinetics of radical species, the rate constants of electron transfer from reducing OH adducts of pyrimidines to RF and FAD have been determined, respectively. It could be deduced that RF and FAD would reduce the probability of repair of the damaged DNA in the presence of enzymes and antioxidants, accordingly RF and FAD might have a radiosensitization effect on DNA damage.  相似文献   

20.
The effect of viscosity, solvent polarity and pH of the medium on the reaction of a protein, bovine serum albumin (BSA), with organohalo-peroxyl radical in aqueous solution has been studied using pulse radiolysis technique. Unlike in dilute aqueous solution, electron transfer from tyrosine to tryptophan radical in BSA has been clearly observed at a viscosity of 7.7 centiPoise (cP). The oxidation of BSA, tryptophan and tyrosine in different media has also been compared with those taking place in dilute aqueous solution. The effect of solvent characteristics on the observed charge transfer has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号