首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
B. circulans 251 β-CGTase应用于海藻糖制备,海藻糖转化率从50.4%提高至71.9%。为进一步提高底物的转化率,运用易错PCR-高通量筛选技术筛选对以麦芽糖为歧化反应受体的亲和性提高的B. circulans 251 β-CGTase突变体。利用低底物浓度的96孔板4,6-亚乙基-对硝基苯-α-D-麦芽七糖苷(EPS)显色法,最终筛选得到了一株对麦芽糖亲和性提高的突变体M234I。将野生型β-CGTase和突变体酶M234I进行蛋白质纯化,测定其酶学性质。结果表明,突变体的比活为345.25U/mg,野生型则为357.63U/mg;突变体M234I对麦芽糖的Km为0.258 2mmol/L,仅为野生型(0.474 9mmol/L)的54.4%,对麦芽糖的亲和性显著提高;突变体的最适温度、最适pH较野生型未发生较大变化。以麦芽糊精(DE值16)为底物,将突变体M234I用于多酶复配体系生产海藻糖,酶反应结果表明海藻糖的转化率最高达74.9%,较野生型β-CGTase提高约3%。  相似文献   

2.
海藻糖微生物酶法合成机制的研究   总被引:5,自引:0,他引:5  
来源于嗜酸热古菌芝田硫化叶菌(Sulfolobus shibatae)B12的麦芽寡糖基海藻糖合酶(MTSase)和麦芽寡糖基海藻糖海藻糖水解酶(MTHase)基因在大肠杆菌中获得表达。将获得纯化的两个酶,分别以麦芽寡糖和淀粉为转化底物,在pH5.5,60℃条件下合成海藻糖。从反应产物分析结果可知,两个酶合成海藻糖时能利用的最小底物是麦芽四糖,海藻糖产率与麦芽寡糖链长正相关。同时还发现两个酶都具有轻微的α-1,4-葡萄糖苷酶活性,能在麦芽寡糖还原末端水解α-1,4糖苷键,生成葡萄糖分子,其反应最小底物分别是麦芽三糖和四糖。推测海藻糖合成酶可能有两个不同的催化活性中心。  相似文献   

3.
设计引物克隆玫瑰微球菌QS412中麦芽寡糖基海藻糖水解酶(MTHase)的基因treZ,通过与pET-28a( )载体相连,转化入宿主菌E.coli BL21,进行发酵诱导。通过SDS-PAGE检测到外源基因在大肠杆菌中有很高的MTHase表达量,但大部分都以不溶性包含体形式存在。对菌体超声破碎全菌液检测酶活,结果显示了水解酶酶活。这是来源于微球菌属的麦芽寡糖基海藻糖水解酶首次获得基因克隆和活性表达,为进一步提高酶活、增大海藻糖产量奠定了基础。  相似文献   

4.
海藻糖微生物酶法合成机制的研究*   总被引:1,自引:0,他引:1       下载免费PDF全文
来源于嗜酸热古菌芝田硫化叶菌 (Sulfolobusshibatae)B1 2的麦芽寡糖基海藻糖合酶(MTSase)和麦芽寡糖基海藻糖海藻糖水解酶 (MTHase)基因在大肠杆菌中获得表达。将获得纯化的两个酶 ,分别以麦芽寡糖和淀粉为转化底物 ,在pH5 5 ,6 0℃条件下合成海藻糖。从反应产物分析结果可知 ,两个酶合成海藻糖时能利用的最小底物是麦芽四糖 ,海藻糖产率与麦芽寡糖链长正相关。同时还发现两个酶都具有轻微的α 1 ,4 葡萄糖苷酶活性 ,能在麦芽寡糖还原末端水解α 1 ,4糖苷键  相似文献   

5.
将B. circulans 251β-CGTase应用于海藻糖制备,海藻糖转化率从50. 4%提高至71. 9%。为进一步提高底物的转化率,运用易错PCR-高通量筛选技术筛选对以麦芽糖为歧化反应受体的亲和性提高的B. circulans 251β-CGTase突变体。利用低底物浓度的96孔板4,6-亚乙基-对硝基苯-α-D-麦芽七糖苷(EPS)显色法,最终筛选得到了一株对麦芽糖亲和性提高的突变体M234I。将野生型β-CGTase和突变体酶M234I进行蛋白质纯化,测定其酶学性质。结果表明,突变体的比活为345. 25U/mg,野生型则为357. 63U/mg;突变体M234I对麦芽糖的K_m为0. 258 2mmol/L,仅为野生型(0. 474 9mmol/L)的54. 4%,对麦芽糖的亲和性显著提高;突变体的最适温度、最适p H较野生型未发生较大变化。以麦芽糊精(DE值16)为底物,将突变体M234I用于多酶复配体系生产海藻糖,酶反应结果表明海藻糖的转化率最高达74. 9%,较野生型β-CGTase提高约3%。  相似文献   

6.
海藻糖生产过程中产酶发酵条件的研究   总被引:1,自引:0,他引:1  
研究了产酶的培养基组分和比例以及最佳培养条件对微球菌生产麦芽寡糖基海藻糖合成酶(MTSase)和麦芽寡糖基海藻糖海藻糖水解酶(MTHase)的影响,得到最优培养基组成为:葡萄糖2.0%,酵母膏2.0%,蛋白胨1.0%,磷酸氢二钾0.1%,硫酸镁0.05%;优化后的培养条件为:以15%的接种量接种至250mL的锥形瓶中,装液量为50mL,初始pH值7.5~8.5,培养温度为30℃,摇床培养4d。经优化后菌体干重由原来的1.938g/L增加到18.5g/L,生物量几乎增长了10倍;而酶活也由原来的30.64U/g增加到206.11U/g,酶活提高了接近7倍。  相似文献   

7.
九十年代中期以后非磷酸化合成海藻糖的新酶系列及相关微生物(多为极端微生物)被发现,不同菌株纯化得到的新酶虽在专一性及酶特性方面存在差异,但均为非磷酸化酶。基因测序及同源性分析表明这些新酶与淀粉酶家族具有很强的同源性。一些文献报道了这些新酶合成海藻糖的作用机制,基本证实酶Ⅰ(MTSase、GTase和TSase)的分子内转糖基作用及酶Ⅱ(MTHase和Amylase)对麦芽寡糖基海藻糖的专一性内切作用,但这些新酶的作用机制仍需深入研究。  相似文献   

8.
【目的】克隆表达嗜热古菌Sulfolobus tokodaii strain 7中的ST0929基因,并测定其酶活性。【方法】根据ST0929基因设计引物进行PCR扩增,将这段基因克隆到p ET-15b质粒上,重组质粒导入大肠杆菌BL21细胞中表达。亲和层析纯化酶蛋白,并测定其酶活性。【结果】SDS-PAGE分析表明其分子量大约为83 k D。酶学性质研究表明该酶的最适温度为75°C,最适p H为5.0,具有很强的热稳定性和p H稳定性。该酶还能对多种金属离子和有机溶剂具有一定的耐受性。底物特异性研究发现该酶能够利用麦芽糊精作底物,而不能利用壳寡糖、麦芽糖等。【结论】通过以上酶学性质的研究,说明这种来源于超嗜热古菌的麦芽寡糖基海藻糖合酶在工业生产海藻糖领域具有一定的应用前景。  相似文献   

9.
从天蓝色链霉菌Streptomyces coelicolor克隆得到海藻糖合酶基因 (ScTreS),在大肠杆菌Escherichia coli BL21(DE3) 中进行了异源表达,通过 Ni-NTA 亲和柱对表达产物进行分离纯化得到纯酶,经 SDS-PAGE 测定其分子量约为62.3 kDa。研究其酶学性质发现该酶最适温度35 ℃;最适pH 7.0,对酸性条件比较敏感。通过同源建模和序列比对分析,对该基因进行定点突变。突变酶K246A比酶活比野生酶提高了1.43倍,突变酶A165T相对提高了1.39倍,海藻糖转化率分别提高了14%和10%。利用突变体重组菌K246A进行全细胞转化优化海藻糖的合成条件并放大进行5 L罐发酵,结果表明:在麦芽糖浓度300 g/L、初始反应温度和pH分别为35 ℃和7.0的条件下,转化率最高达到71.3%,产量为213.93 g/L;当底物浓度增加到700 g/L时,海藻糖产量仍可达到465.98 g/L。  相似文献   

10.
麦芽寡糖基海藻糖合酶( Maltodigosyltrehalose synthase;MTSase)是近年来在一些微生物中发现的新型分子内糖苷转移酶,能将淀粉或淀粉部分水解物(大于3个葡糖基)的糖链还原末端的α-1,4糖苷键转化为α-1,1糖苷键,生成具海藻糖末端结构的产物[1],如下所示: Gn为聚合度n(n>3)的麦芽寡糖,Gn-2-T为麦芽寡糖基海藻糖,-T为海藻糖基.  相似文献   

11.
【背景】南极假丝酵母脂肪酶B (Candida antarctica lipase B,CALB)具有优异的酯合成活性,是在非水相催化中应用极为广泛的工业用酶。【目的】在保留CALB优秀催化性能的基础上,提高CALB的热稳定性。【方法】采用预测软件PoPMuSiC和FoldX计算CALB潜在热稳定性突变位点,并根据氨基酸残基的空间位置进一步筛选。利用重叠延伸PCR技术在基因calb中引入10个单点突变,于毕赤酵母GS115中表达。【结果】点突变A146G、A151P、L278M均能有效提高CALB的热稳定性。在单点突变的基础上,组合突变体A146G-L278M和A146G-L278M-A151P的热稳定性得到进一步提高。与野生型相比,突变体A146G-L278M和A146G-L278M-A151P的最适反应温度均提高了5°C,T_m值分别提高了3.3°C和4.2°C。此外,合成己酸乙酯的酶促反应动力学分析表明,相比于野生型,突变体A146G-L278M和A146G-L278M-A151P对己酸和乙醇均具有更高的亲和力,且对己酸的催化效率k_(catA)/K_(m A)是野生型的4.1倍。通过分子动力学模拟,从分子水平阐明了突变体A146G-L278M和A146G-L278M-A151P热稳定性提高的机制。【结论】本研究采用的理性设计策略对提高CALB的热稳定性是行之有效的,该策略可作为其他工业用酶提高热稳定性的参考。  相似文献   

12.
Trehalose (alpha-D-glucopyranosyl-1,1-alpha-D-glucopyranose) is a non-reducing diglucoside found in various organisms that serves as a carbohydrate reserve and as an agent that protects against a variety of physical and chemical stresses. Deinococcus radiodurans possesses an alternative biosynthesis pathway for the synthesis of trehalose from maltooligosaccharides. This reaction is mediated by two enzymes: maltooligosyltrehalose synthase (MTSase) and maltooligosyltrehalose trehalohydrolase (MTHase). Here, we present the 1.1A resolution crystal structure of MTHase. It consists of three major domains: two beta-sheet domains and a conserved glycosidase (beta/alpha)8 barrel catalytic domain. Three subdomains consisting of short insertions were identified within the catalytic domain. Subsequently, structures of MTHase in complex with maltose and trehalose were obtained at 1.2 A and 1.5 A resolution, respectively. These structures reveal the importance of the three inserted subdomains in providing the key residues required for substrate recognition. Trehalose is recognised specifically in the +1 and +2 binding subsites by an extensive hydrogen-bonding network and a strong hydrophobic stacking interaction in between two aromatic residues. Moreover, upon binding to maltose, which mimics the substrate sugar chain, a major concerted conformational change traps the sugar chain in the active site. The presence of magnesium in the active site of the MTHase-maltose complex suggests that MTHase activity may be regulated by divalent cations.  相似文献   

13.
Tang SY  Le QT  Shim JH  Yang SJ  Auh JH  Park C  Park KH 《The FEBS journal》2006,273(14):3335-3345
DNA shuffling was used to improve the thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2. Two highly thermostable mutants, III-1 and III-2, were generated after three rounds of shuffling and recombination of mutations. Their optimal reaction temperatures were all 80 degrees C, which was 10 degrees C higher than that of the wild-type. The mutant enzyme III-1 carried seven mutations: N147D, F195L, N263S, D311G, A344V, F397S, and N508D. The half-life of III-1 was about 20 times greater than that of the wild-type at 78 degrees C. The mutant enzyme III-2 carried M375T in addition to the mutations in III-1, which was responsible for the decrease in specific activity. The half-life of III-2 was 568 min while that of the wild-type was < 1 min at 80 degrees C. The melting temperatures of III-1 and III-2, as determined by differential scanning calorimetry, increased by 6.1 degrees C and 11.4 degrees C, respectively. Hydrogen bonding, hydrophobic interaction, electrostatic interaction, proper packing, and deamidation were predicted as the mechanisms for the enhancement of thermostability in the enzymes with the mutations.  相似文献   

14.
亚栖热菌透性化细胞的耦合固定化研究   总被引:1,自引:0,他引:1  
将海藻酸盐凝胶包埋法与交联法和聚电解质静电自组装覆膜法相耦合,对含有海藻糖合酶活性的亚栖热菌的透性化细胞进行了固定化研究。结果表明,利用重氮树脂和聚苯乙烯磺酸钠对海藻酸凝胶微球交替覆膜,可以显著提高凝胶微球在磷酸盐缓冲液中的稳定性,以碳二亚胺对固定化细胞进行交联处理则可以提高固定化细胞中海藻糖合酶的热稳定性。透性化细胞经包埋-交联-覆膜耦合固定化后,酶活回收率为32%,最适酶反应pH值由6.5左右升至7.0左右,最适反应温度未变,仍为60℃。所得固定化细胞间歇反应时,催化麦芽糖转化为海藻糖的转化率可达60%,重复使用4次(每次50℃、反应24h),酶活损失小于20%,转化率可保持在50%以上。  相似文献   

15.
Anabaena 7120 cells were exposed to NaCl (25-175 mM) stress. Maximum growth was recorded in media containing 150mM NaCl. Short-term exposure (48h) of the cyanobacterial biomass to 150mM NaCl, induced highest trehalose level (37mM). Control cells lacking NaCl did not show any trace of trehalose as ascertained by NMR and HPLC analysis. Trehalose biosynthesis observed with NaCl plus high temperature (40 degrees C) indicated that its production was specifically triggered by NaCl, not temperature. The increase in trehalose level during NaCl stress was the result of overexpression of the trehalose-forming enzymes maltooligosyltrehalose synthase (MTSase), EC 5.4.99.15 (114kDa) and maltooligosyltrehalose trehalohydrolase (MTHase), EC 3.2.1.141 (68 kDa) as evidenced by SDS-PAGE analysis. To our knowledge this is the first report of induced trehalose biosynthesis in Anabaena 7120 during salt-stress, accompanied by identification of MTSase and MTHase enzymes on gel. It is suggested that Anabaena 7120 cells synthesize the osmolyte trehalose to withstand osmotic fluctuations.  相似文献   

16.
Oh KH  Nam SH  Kim HS 《Protein engineering》2002,15(8):689-695
N-Carbamyl-D-amino acid amidohydrolase (N-carbamoylase), which is currently employed in the industrial production of unnatural D-amino acid in conjunction with D-hydantoinase, has low oxidative and thermostability. We attempted the simultaneous improvement of the oxidative and thermostability of N-carbamoylase from Agrobacterium tumefaciens NRRL B11291 by directed evolution using DNA shuffling. In a second generation of evolution, the best mutant 2S3 with improved oxidative and thermostability was selected, purified and characterized. The temperature at which 50% of the initial activity remains after incubation for 30 min was 73 degrees C for 2S3, whereas it was 61 degrees C for wild-type enzyme. Treatment of wild-type enzyme with 0.2 mM hydrogen peroxide for 30 min at 25 degrees C resulted in a complete loss of activity, but 2S3 retained about 79% of the initial activity under the same conditions. The K(m) value of 2S3 was estimated to be similar to that of wild-type enzyme; however k(cat) was decreased, leading to a slightly reduced value of k(cat)/K(m), compared with wild-type enzyme. DNA sequence analysis revealed that six amino acid residues were changed in 2S3 and substitutions included Q23L, V40A, H58Y, G75S, M184L and T262A. The stabilizing effects of each amino acid residue were investigated by incorporating mutations individually into wild-type enzyme. Q23L, H58Y, M184L and T262A were found to enhance both oxidative and thermostability of the enzyme and of them, T262A showed the most significant effect. V40A and G75S gave rise to an increase only in oxidative stability. The positions of the mutated amino acid residues were identified in the structure of N-carbamoylase from Agrobacterium sp. KNK 712 and structural analysis of the stabilizing effects of each amino acid substitution was also carried out.  相似文献   

17.
目的:对大肠杆菌Escherichia coli植酸酶基因进行定向进化,获得热稳定性提高的植酸酶突变体。方法:利用易错PCR技术和96微孔板高通量筛选方法获得突变体基因,并对突变酶进行异源表达、纯化及性质研究。结果:通过筛选获得3株热稳定性明显提高的植酸酶突变体APPA1、APPA2、APPA3。酶学性质分析结果表明,3个突变体分子量均约为55kDa,最适pH均为4.5,与野生型无明显差别,热稳定性较野生型均有显著提高,其中突变体APPA3的最适温度为65℃,较野生酶提高5℃,在90℃处理10min后保留50%的酶活。酶的三维结构模拟显示,5个突变位点在植酸酶整体结构上均引入新氢键。结论:通过定向进化获得热稳定性提高的大肠杆菌Escherichia coli植酸酶突变体,对植酸酶的工业应用和研究植酸酶结构与功能关系具有重要意义。  相似文献   

18.
The thermostability of maltogenic amylase from Thermus sp. strain IM6501 (ThMA) was improved greatly by random mutagenesis using DNA shuffling. Four rounds of DNA shuffling and subsequent recombination of the mutations produced the highly thermostable mutant enzyme ThMA-DM, which had a total of seven individual mutations. The seven amino acid substitutions in ThMA-DM were identified as R26Q, S169N, I333V, M375T, A398V, Q411L, and P453L. The optimal reaction temperature of the recombinant enzyme was 75 degrees C, which was 15 degrees C higher than that of wild-type ThMA, and the melting temperature, as determined by differential scanning calorimetry, was increased by 10.9 degrees C. The half-life of ThMA-DM was 172 min at 80 degrees C, a temperature at which wild-type ThMA was completely inactivated in less than 1 min. Six mutations that were generated during the evolutionary process did not significantly affect the specific activity of the enzyme, while the M375T mutation decreased activity to 23% of the wild-type level. The molecular interactions of the seven mutant residues that contributed to the increased thermostability of the mutant enzyme with other adjacent residues were examined by comparing the modeled tertiary structure of ThMA-DM with those of wild-type ThMA and related enzymes. The A398V and Q411L substitutions appeared to stabilize the enzyme by enhancing the interdomain hydrophobic interactions. The R26Q and P453L substitutions led potentially to the formation of genuine hydrogen bonds. M375T, which was located near the active site of ThMA, probably caused a conformational or dynamic change that enhanced thermostability but reduced the specific activity of the enzyme.  相似文献   

19.
Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enhanced thermostability. The prediction strategy was based on the calculated site evolutionary entropy and unfolding free energy difference between the mutant and wild-type (WT) methyl parathion hydrolase enzyme from Ochrobactrum sp. M231 [Ochr-methyl parathion hydrolase (MPH)]. As a result, seven amino acid sites within Ochr-MPH were selected and used to construct seven saturation mutagenesis libraries. The results of screening these libraries indicated that six sites could result in mutated enzymes exhibiting better thermal stability than the WT enzyme. A stepwise evolutionary approach was designed to combine these selected mutants and a mutant with four point mutations (S274Q/T183E/K197L/S192M) was selected. The T m and T 50 of the mutant enzyme were 11.7 and 10.2 °C higher, respectively, than that of the WT enzyme. The success of this design methodology for Ochr-MPH suggests that it was an efficient strategy for enhancing protein thermostability and suitable for protein engineering.  相似文献   

20.
The thermostability of maltogenic amylase from Thermus sp. strain IM6501 (ThMA) was improved greatly by random mutagenesis using DNA shuffling. Four rounds of DNA shuffling and subsequent recombination of the mutations produced the highly thermostable mutant enzyme ThMA-DM, which had a total of seven individual mutations. The seven amino acid substitutions in ThMA-DM were identified as R26Q, S169N, I333V, M375T, A398V, Q411L, and P453L. The optimal reaction temperature of the recombinant enzyme was 75°C, which was 15°C higher than that of wild-type ThMA, and the melting temperature, as determined by differential scanning calorimetry, was increased by 10.9°C. The half-life of ThMA-DM was 172 min at 80°C, a temperature at which wild-type ThMA was completely inactivated in less than 1 min. Six mutations that were generated during the evolutionary process did not significantly affect the specific activity of the enzyme, while the M375T mutation decreased activity to 23% of the wild-type level. The molecular interactions of the seven mutant residues that contributed to the increased thermostability of the mutant enzyme with other adjacent residues were examined by comparing the modeled tertiary structure of ThMA-DM with those of wild-type ThMA and related enzymes. The A398V and Q411L substitutions appeared to stabilize the enzyme by enhancing the interdomain hydrophobic interactions. The R26Q and P453L substitutions led potentially to the formation of genuine hydrogen bonds. M375T, which was located near the active site of ThMA, probably caused a conformational or dynamic change that enhanced thermostability but reduced the specific activity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号