首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Anabaena 7120 cells were exposed to NaCl (25-175 mM) stress. Maximum growth was recorded in media containing 150mM NaCl. Short-term exposure (48h) of the cyanobacterial biomass to 150mM NaCl, induced highest trehalose level (37mM). Control cells lacking NaCl did not show any trace of trehalose as ascertained by NMR and HPLC analysis. Trehalose biosynthesis observed with NaCl plus high temperature (40 degrees C) indicated that its production was specifically triggered by NaCl, not temperature. The increase in trehalose level during NaCl stress was the result of overexpression of the trehalose-forming enzymes maltooligosyltrehalose synthase (MTSase), EC 5.4.99.15 (114kDa) and maltooligosyltrehalose trehalohydrolase (MTHase), EC 3.2.1.141 (68 kDa) as evidenced by SDS-PAGE analysis. To our knowledge this is the first report of induced trehalose biosynthesis in Anabaena 7120 during salt-stress, accompanied by identification of MTSase and MTHase enzymes on gel. It is suggested that Anabaena 7120 cells synthesize the osmolyte trehalose to withstand osmotic fluctuations.  相似文献   

2.
Ustilago maydis is a fungal pathogen which is exposed during its life cycle to both abiotic and biotic stresses before and after the infection of maize. To cope with extreme environmental changes, microorganisms usually accumulate the disaccharide trehalose. We have investigated both the accumulation of trehalose and the activity of trehalase during the adaptation of U. maydis haploid cells to thermal, sorbitol, and NaCl stresses. Sorbitol and sodium chloride induced sustained accumulation of trehalose, while a transient increase was observed under heat stress. Sorbitol stressed cells showed higher trehalase activity compared with control cells and to those stressed by NaCl and high temperature. Addition of cycloheximide, a protein synthesis inhibitor, did not affect the trehalose accumulation during the first 15 min, but basal levels of trehalose were reached after the second period of 15 min. The proteomic analysis of the response of U. maydis to temperature, sorbitol, and salt stresses indicated a complex pattern which highlights the change of 18 proteins involved in carbohydrate and amino acid metabolism, protein folding, redox regulation, ion homeostasis, and stress response. We hypothesize that trehalose accumulation during sorbitol stress in U. maydis might be related to the adaptation of this organism during plant infection.  相似文献   

3.
发菜(Nostoc flagelliforme)是一种陆生固氮蓝藻,具有强烈的旱生生态适应性.运用双向电泳技术、凝胶图像分析、MALDI-TOF-TOF/MS质谱鉴定和数据库检索,发现发菜Ferritin在干旱胁迫条件下表达量逐渐降低.根据鉴定的Ferritin已知氨基酸序列设计简并性引物克隆该基因,获得了长度为540 bp的DNA,GenBank登陆号为HM854287.序列比较显示该基因具有较高的保守性,蛋白质二级结构主要由α螺旋和随机卷曲构成.RT-PCR分析表明,Ferritin mRNA在干旱胁迫条件下表达量逐渐降低,与Ferritin的表达趋势一致.将Ferritin基因在大肠杆菌中表达,获得符合预期的外源重组蛋白(22.4 kD).实验结果可为进一步研究发菜耐旱的分子机理及探讨发菜对极端干旱环境的适应和保护机制奠定基础.  相似文献   

4.
The trehalose (alpha-D-glucopyranosyl-[1,1]-alpha-D-glucopyranose) biosynthesis genes MhMTS and MhMTH, encoding a maltooligosyltrehalose synthase (MhMTS) and a maltooligosyltrehalose trehalohydrolase (MhMTH), respectively, have been cloned from the hyperthermophilic archaebacterium Metallosphaera hakonesis. The ORF of MhMTS is 2,142 bp long, and encodes 713 amino acid residues constituting a 83.8 kDa protein. MhMTH is 1,677 bp long, and encodes 558 amino acid residues constituting a 63.7 kDa protein. The deduced amino acid sequences of MhMTS and MhMTH contain four regions highly conserved for MTSs and three for MTHs that are known to constitute substrate-binding sites of starch-hydrolyzing enzymes. Recombinant proteins obtained by expressing the MhMTS and MhMTH genes in E. coli catalyzed a sequential reaction converting maltooligosaccharides to produce trehalose. Optimum pH of the MhMTS/MhMTH enzyme reaction was around 5.0 and optimum temperature was around 70 degrees C. Trehalose-producing activity of the MhMTS/ MhMTH was notably stable, retaining 80% of the activity after preincubation of the enzyme mixture at 70 degrees C for 48 h, but was gradually abolished by incubating at above 85 degrees C. Addition of thermostable 4-alpha-glucanotransferase increased the yield of trehalose production from maltopentaose by 10%. The substrate specificity of the MhMTS/MhMTH-catalyzed reaction was extended to soluble starch, the most abundant maltodextrin in nature.  相似文献   

5.
glmM编码的磷酸葡糖胺变位酶是肽聚糖合成前体的关键酶。为探究发菜glmM响应干旱胁迫的表达调控机制及明确其分子信息,本研究对干旱胁迫条件下发菜glmM在转录水平的差异表达进行了分析,并对glmM的表达水平、磷酸化修饰、乙酰化修饰和琥珀酰化修饰水平进行了检测,克隆了发菜glmM,进行了序列分析和原核表达。结果表明,干旱胁迫条件下,发菜glmM在转录水平上的表达量先增加后减少,glmM上调表达,glmM的磷酸化修饰水平逐渐增加,乙酰化修饰水平相对稳定,琥珀酰化修饰水平有明显变化。设计特异性引物克隆glmM基因,获得全长1416 bp发菜glmM基因,与肺衣(5183)glmM的核苷酸序列同源性为95%,氨基酸同源性为97%。将glmM在大肠杆菌中表达,获得一个51.45 kD的外源蛋白,MALDI-TOF-TOF/MS分析证明该蛋白为磷酸葡糖胺变位酶。研究结果为深入研究发菜glmM的分子信息、生物学功能及其响应干旱胁迫的分子机制提供帮助。  相似文献   

6.
Trehalose has many potential applications in biotechnology and the food industry due to its protective effect against environmental stress. Our work explores microbiological production methods based on the capacity of Corynebacterium glutamicum to excrete trehalose. We address here raising trehalose productivity through homologous overexpression of maltooligosyltrehalose synthase and the maltooligosyltrehalose trehalohydrolase genes. In addition, heterologous expression of the UDP-glucose pyrophosphorylase gene from Escherichia coli improved the supply of glycogen. Gene expression effects were tested on enzymatic activities and intracellular glycogen content, as well as on accumulated and excreted trehalose. Overexpression of the treY gene and the treY/treZ synthetic operon significantly increased maltooligosyltrehalose synthase activity, the rate-limiting step, and improved the specific productivity and the final titer of trehalose. Furthermore, a strong decrease was noted in glycogen accumulation. Expression of galU/treY and galU/treYZ synthetic operons showed a partial recovery in the intracellular glycogen levels and a significant improvement in both intra- and extracellular trehalose content.  相似文献   

7.
Trehalose (α-d-glucopyranosyl α-d-glucopyranoside) is an important non-reducing disaccharide used in the food industry due to its mild sweetness (45% that of sucrose), low cariogenicity, high glass transition temperature, low hygroscopicity, and protein protection properties. In this study, we accomplished the production of trehalose from sucrose as a sole substrate using a novel dual-enzyme system, in which amylosucrase (ASase) and maltooligosyltrehalose synthase-trehalohydrolase (MTSH) fusion enzyme were employed. The biotransformation of sucrose to trehalose was confirmed by high-performance anion-exchange chromatography (HPAEC) analysis. Trehalose was successfully produced by both simultaneous and sequential methods by using ASase and MTSH. A higher trehalose production yield (3.15 ± 0.83 mM trehalose/20 mM sucrose) was observed in the sequential method than the simultaneous method (1.43 ± 0.14 mM trehalose/20 mM sucrose), indicating that the production of maltooligosaccharides from sucrose by ASase was an important step in the biosynthesis of trehalose.  相似文献   

8.
Salt tolerance, a multigenic trait, necessitates knowledge about biosynthesis and function of candidate gene(s) at the cellular level. Among the osmolytes, trehalose biosynthesis in cyanobacteria facing NaCl stress is little understood. Anabaena 7120 filaments exposed to 150 mm NaCl fragmented and recovered on transfer to –NaCl medium with the increased heterocysts frequency (7%) over the control (4%). Cells failed to retain Na+ beyond a threshold [2.19 mm/cm3 (PCV)]. Whereas NaCl-stressed cells exhibited a marginal rise in K+ (1.1-fold) only at 30 h, for Na+ it was 130-fold at 48 h over cells in control. A time-course study (0–54 h) revealed reduction in intracellular Na+ beyond 48 h [0.80 mm/cm3 (PCV)] suggestive of ion efflux. The NaCl-stressed cells showed differential expression of maltooligosyltrehalose synthase (MTSase; EC 5.4.99.15) and maltooligosyltrehalose trehalohydrolase (MTHase; EC 3.2.1.141) depending on the time and the extent of intracellular Na+ buildup.  相似文献   

9.
The response to moderate salt stress of a Scytonema species isolated from a soil crust in the arid region of central Australia was studied. An increase in intracellular trehalose and sucrose concentrations was detected by NMR and HPLC analysis following salt stress, maximal amounts being produced by exposure to 150 mM NaCl after 48 h. When the organism was subsequently returned to normal growth conditions, the cellular concentrations of these solutes decreased. The biosynthesis of trehalose and sucrose was studied and found, in both cases, to involve both sugar phosphate synthase and phosphatase enzymes. The combined synthase activities and the individual phosphatase activities in cell extracts were increased by salt stress. Trehalose phosphorylase was the only catabolic enzyme detected for trehalose; neither trehalase nor phosphotrehalase activities could be detected. This is the first report of trehalose phosphorylase activity in cyanobacteria. Both trehalose and sucrose phosphorylase activities increased in salt-stressed cells, whereas the activity of invertase did not change.  相似文献   

10.
Plant abiotic stress tolerance has been modulated by engineering the trehalose synthesis pathway. However, many stress-tolerant plants that have been genetically engineered for the trehalose synthesis pathway also show abnormal development. The metabolic intermediate trehalose 6-phosphate has the potential to cause aberrations in growth. To avoid growth inhibition by trehalose 6-phosphate, we used a gene that encodes a bifunctional in-frame fusion (BvMTSH) of maltooligosyltrehalose synthase (BvMTS) and maltooligosyltrehalose trehalohydrolase (BvMTH) from the nonpathogenic bacterium Brevibacterium helvolum. BvMTS converts maltooligosaccharides into maltooligosyltrehalose and BvMTH releases trehalose. Transgenic rice plants that over-express BvMTSH under the control of the constitutive rice cytochrome c promoter (101MTSH) or the ABA-inducible Ai promoter (105MTSH) show enhanced drought tolerance without growth inhibition. Moreover, 101MTSH and 105MTSH showed an ABA-hyposensitive phenotype in the roots. Our results suggest that over-expression of BvMTSH enhances drought-stress tolerance without any abnormal growth and showes ABA hyposensitive phenotype in the roots. [BMB Reports 2014; 47(1): 27-32]  相似文献   

11.
A DNA fragment encoding two enzymes leading to trehalose biosynthesis, maltooligosyltrehalose synthase (BvMTS) and maltooligosyltrehalose trehalohydrolase (BvMTH), was cloned from the nonpathogenic bacterium Brevibacterium helvolum. The open reading frames for the two proteins are 2,331 and 1,770 bp long, respectively, and overlap by four nucleotides. Recombinant BvMTS, BvMTH, and fusion gene BvMTSH, constructed by insertion of an adenylate in the overlapping region, were expressed in Escherichia coli. Purified BvMTS protein catalyzed conversion of maltopentaose to maltotriosyltrehalose, which was further hydrolyzed by BvMTH protein to produce trehalose and maltotriose. The enzymes shortened maltooligosaccharides by two glucose units per cycle of sequential reactions and released trehalose. Maltotriose and maltose were not catalyzed further and thus remained in the reaction mixtures depending on whether the substrates had an odd or even number of glucose units. The bifunctional in-frame fusion enzyme, BvMTSH, catalyzed the sequential reactions more efficiently than an equimolar mixture of the two individual enzymes did, presumably due to a proximity effect on the catalytic sites of the enzymes. The recombinant enzymes produced trehalose from soluble starch, an abundant natural source for trehalose production. Addition of alpha-amylase to the enzyme reaction mixture dramatically increased trehalose production by partial hydrolysis of the starch to provide more reducing ends accessible to the BvMTS catalytic sites.  相似文献   

12.
Nostoc flagelliforme Born. et Flah is highly adapted to drought stress, cold and light stresses, and suitable for growing in the unfavorable areas. This paper presents the results of the analysis of the membrane (mainly thylakoid membrane) lipids from N. flagelliforme in order to investigate the relationship between membrane lipid composition and stress resistance to this cyanobacteria. The membrane lipids are composed of monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG), sulfoquinovosyl diacylglycerol (SQDG) and phosphatidylglycerol (PG). The major fatty acids in these lipids are palmitic (16∶0), palmitoleic (16∶1), stearic (18∶0), oleic (18∶1), linoleic (18∶2) and linolenic (18∶3) acids. In N. flagelliforme, polyunsaturated fatty acids account for 73% of the total fatty acids, much higher than that of the other cyanobacteria reported so far. Among which 16∶1 and 18∶3 are as high as 28.9% and 34.3% respectively. The high resistance of N. flagelliforme to abnormal conditions may be associated with the extent of unsaturation of fatty acids. In addition, the wild N. flagelliforme treated with water for 30 min and cultured for 24 h and the lipid and fatty acid composition were found to be not affected by water-absorption.  相似文献   

13.
对野生发菜(Nostocflagelliforme Bom.et Flab)的膜脂(主要成分为类囊体膜脂)及其脂肪酸组成进行了测定分析.发菜的膜脂由单半乳糖甘油二酯(MGDG)、双半乳糖甘油二酯(DGDG)、磷酯酰甘油(PG)和硫代异鼠李糖甘油二酯(SQDG)组成,其酯酰基连接有棕榈酸(16:0)、十六碳烯酸(16:1)、硬脂酸(18:0)、油酸(18:1)、亚油酸(18:2)和亚麻酸(18:3)6种脂肪酸.发菜的不饱和脂肪酸含量可达总脂的73%,特别是16:1和18:3分别高达29%和34%,远远高于已报道的其他蓝藻,说明了发菜类囊体膜具有较强的抗逆性特点.同时还对复水30 min和复水后生长24 h的发菜膜脂及其脂肪酸组成进行了分析.结果表明,复水对野生发菜的膜脂及其脂肪酸组成没有显著影响,说明发菜的膜脂和脂肪酸组成在干燥-吸水过程中能保持很高的稳定性.  相似文献   

14.
为探讨发菜噬菌体休克蛋白A(PspA)的分子信息和基因功能,本研究通过设计特异引物克隆发菜PspA基因,采用qRT-PCR技术,分析发菜PspA基因在干旱胁迫下的表达模式;构建PspA真核表达载体pCAM35s-GFP-PspA,对PspA进行亚细胞定位和PspA基因拟南芥遗传转化,并对阳性转化拟南芥分别进行Southern和Western杂交验证;对转基因植株进行抗旱实验,结果表明,PspA基因全长为777 bp,干旱胁迫下发菜PspA基因表达量显著增加;PspA定位于细胞膜上,通过花絮浸染法获得稳定遗传的转PspA基因拟南芥。Southern杂交表明,PspA基因已成功导入拟南芥基因组中并以低拷贝形式存在,Western blot进一步证实PspA蛋白在转基因拟南芥中成功表达。在干旱胁迫下,转PspA基因拟南芥生长状态明显好于野生型植株。研究结果为深入探讨发菜PspA基因功能及其在响应干旱胁迫过程中的应答机制奠定了基础。  相似文献   

15.
Trehalose has many potential applications in biotechnology and the food industry due to its protective effect against environmental stress. Our work explores microbiological production methods based on the capacity of Corynebacterium glutamicum to excrete trehalose. We address here raising trehalose productivity through homologous overexpression of maltooligosyltrehalose synthase and the maltooligosyltrehalose trehalohydrolase genes. In addition, heterologous expression of the UDP-glucose pyrophosphorylase gene from Escherichia coli improved the supply of glycogen. Gene expression effects were tested on enzymatic activities and intracellular glycogen content, as well as on accumulated and excreted trehalose. Overexpression of the treY gene and the treY/treZ synthetic operon significantly increased maltooligosyltrehalose synthase activity, the rate-limiting step, and improved the specific productivity and the final titer of trehalose. Furthermore, a strong decrease was noted in glycogen accumulation. Expression of galU/treY and galU/treYZ synthetic operons showed a partial recovery in the intracellular glycogen levels and a significant improvement in both intra- and extracellular trehalose content.  相似文献   

16.
Aquatic-living colonial filaments of the terrestrial cyanobacterium Nostoc flagelliforme, developed from single cells in laboratory under aquatic conditions, were cultured at different salt concentrations (0–400 mM), and their photosynthetic responses were investigated to see their physiological tolerance. Light-saturated photosynthesis, photosynthetic efficiency and dark respiration showed the highest values in treatments at 20 mM NaCl for 24 or 48 h incubation. Changes in salt level exerted little influence on light saturation point and light compensation point. Patterns of photosynthetic performance as a function of salt were the same after 48 h as those after 24 h treatment, with the largest values at 20 mM NaCl, though photochemical efficiency increased with increased NaCl concentrations in the colonies treated for 48 h. From an applied point of view, the laboratory-generated aquatic living colonies are able to tolerate salt stress when transferred from aquatic to terrestrial environments.  相似文献   

17.
The drought-resistant cyanobacteria Phormidium autumnale, strain LPP4, and a Chroococcidiopsis sp. accumulated trehalose, sucrose, and both trehalose and sucrose, respectively, in response to matric water stress. Accumulated sugar concentrations reached values of up to 6.2 μg of trehalose per μg of chlorophyll in P. autumnale, 6.9 μg of sucrose per μg of chlorophyll in LPP4, and 4.1 μg of sucrose and 3.2 μg of trehalose per μg of chlorophyll in the Chroococcidiopsis sp. The same sugars were accumulated by these cyanobacteria in similar concentrations under osmotic water stress. Cyanobacteria that did not show drought resistance (Plectonema boryanum and Synechococcus strain PCC 7942) did not accumulate significant amounts of sugars when matric water stress was applied.  相似文献   

18.
克隆FmJAZ1基因,明确其在低温和NaCl胁迫中的响应模式和激素诱导下的转录表达特性。通过基因克隆的方法得到水曲柳中的FmJAZ1基因,利用生物信息学软件对所得到的序列进行分析并构建系统进化树,对水曲柳FmJAZ1基因进行了时空表达特异性的分析,对根、茎、叶、芽、雄花、雌花、种子等7个部位以及在5-9月5个月份分别取样,对水曲柳进行低温(4℃)和盐胁迫(200 mmol/L NaCl)2种非生物胁迫处理以及脱落酸(ABA)、赤霉素(GA3)、生长素(IAA)、茉莉酸(JA)、水杨酸(SA)等激素信号诱导处理,然后对试验材料进行荧光定量分析。克隆出全长为684 bp的核苷酸序列。生物信息学软件分析得到JZA1基因具有完整的开放阅读框,编码227个氨基酸,JAZ1蛋白不含有信号肽,不属于跨膜蛋白,为不稳定亲水性蛋白。时空表达结果显示,FmJAZ1基因在茎中表达量最高,且在8月份表达量最高;非生物胁迫结果表明低温处理后FmJAZ1在6h、24h表达量较高;而NaCl处理后,在24 h表达量较高,且该基因响应低温胁迫较NaCl胁迫迅速;激素信号诱导结果显示,处理后不同时间,基因表达量变化较为明显,其中GA3处理后3h最为明显,为对照组的77.3倍,分析了FmJAZ1基因在低温、NaCl胁迫和激素诱导下的表达模式。FmJAZ1基因充分响应了逆境胁迫和激素信号诱导,通过蛋白和基因层面对逆境进行响应,JAZ蛋白在其中起到了桥梁的作用,并扮演了重要的角色。  相似文献   

19.
nifD和nifK编码钼铁固氮酶中的钼铁蛋白。为了解发菜nifD和nifK分子信息及对水分胁迫的响应机制,该研究设计了简并性引物克隆发菜nifD和nifK全长,进行原核表达和生物信息学分析,并对不同失水状态下发菜nifD和nifK在转录水平的差异表达和固氮酶活性的变化进行分析。结果表明,发菜nifD和nifK全长分别为1 443 bp和1 536 bp (登陆号为分别为KU886164和KU886165);将nifD和nifK在大肠杆菌中表达,分别获得一个约57 kD和58 kD的外源蛋白;生物信息学分析表明,nifD和nifK核苷酸序列和推译的氨基酸序列均与点形念珠藻(Nostoc punctiforme PCC 73102)高度一致性;nifD和nifK的二级结构主要有α-螺旋、β-折叠、β-转角和随机卷曲。此外,随着藻体含水量的逐渐降低,发菜nifD和nifK在转录水平上的表达量逐渐增加,但固氮酶活性呈现先增加后下降的趋势。研究结果为深入全面研究发菜固氮酶基因结构及其响应水分胁迫的固氮机理及氮代谢途径提供了基础。  相似文献   

20.
A DNA fragment encoding two enzymes leading to trehalose biosynthesis, maltooligosyltrehalose synthase (BvMTS) and maltooligosyltrehalose trehalohydrolase (BvMTH), was cloned from the nonpathogenic bacterium Brevibacterium helvolum. The open reading frames for the two proteins are 2,331 and 1,770 bp long, respectively, and overlap by four nucleotides. Recombinant BvMTS, BvMTH, and fusion gene BvMTSH, constructed by insertion of an adenylate in the overlapping region, were expressed in Escherichia coli. Purified BvMTS protein catalyzed conversion of maltopentaose to maltotriosyltrehalose, which was further hydrolyzed by BvMTH protein to produce trehalose and maltotriose. The enzymes shortened maltooligosaccharides by two glucose units per cycle of sequential reactions and released trehalose. Maltotriose and maltose were not catalyzed further and thus remained in the reaction mixtures depending on whether the substrates had an odd or even number of glucose units. The bifunctional in-frame fusion enzyme, BvMTSH, catalyzed the sequential reactions more efficiently than an equimolar mixture of the two individual enzymes did, presumably due to a proximity effect on the catalytic sites of the enzymes. The recombinant enzymes produced trehalose from soluble starch, an abundant natural source for trehalose production. Addition of α-amylase to the enzyme reaction mixture dramatically increased trehalose production by partial hydrolysis of the starch to provide more reducing ends accessible to the BvMTS catalytic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号