首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
苏敏  魏江春 《菌物研究》2008,6(1):57-62
对喇叭石蕊共生菌、藻液体培养条件进行了研究。结果表明:共生菌生长在以40g/L肌醇为碳源、2g/LL-谷氨酰胺为氮源、起始pH值为7.0的LB液体培养基中,培养温度为20℃时表现最佳。其共生藻的生长在以160g/L葡萄糖为碳源、1.75g/LNaNO3为氮源、起始pH值为5.0的BBM液体培养基中,培养温度为20℃时表现最佳。  相似文献   

2.
磷元素对微藻的生长代谢具有重要作用。为了探究磷源浓度调控海水螺旋藻主要代谢产物合成积累的可行性。以改良的Zarrouk海水培养基为基础,通过设置5种K2HPO3浓度(0.005-0.04 g/L),分析不同磷浓度对海水螺旋藻的生长及生理生化指标的影响。结果显示,海水螺旋藻生物质浓度和蛋白质含量随着磷源浓度的升高而增加,0.04 g/L处理组达到最大值,分别为0.48±0.02 g/L和59.23±0.61%DW;总多糖含量随着磷源浓度增加先显著下降,0.005 g/L处理组含量最高(25.96±1.61%DW);C-藻蓝蛋白、别藻蓝蛋白和总藻胆蛋白含量随着磷源浓度增加,先升后降,0.03 g/L处理组含量最高,分别为14.56±0.99%DW、4.21±0.19%DW和18.77±0.39%DW;叶绿素a与类胡萝卜素含量随着磷源浓度的增加而升高,最高含量分别为1.01±0.01%DW和0.35±0.02%DW;而磷源浓度的变化对总脂含量和脂肪酸组成总体上无显著影响(P0.05)。低磷源浓度有利于多糖积累,高磷源浓度则促进蛋白质和藻蓝蛋白、叶绿素和类胡萝卜素的合成,通过磷源调节可有效定向诱导海水螺旋藻主要高值化产物的合成积累。  相似文献   

3.
研究了碳源与氮源对单针藻Monoraphidium sp. FXY-10异养培养的影响。以BG-11为基础培养基,通过添加不同类型、浓度梯度碳源和氮源,比较分析微藻生物量、油脂积累以及脂肪酸组成。结果表明,以葡萄糖作碳源,硝酸钠为氮源,微藻细胞积累的油脂是理想的生物柴油制备原料。硝酸钠浓度分别为1.00、3.00和5.00 g/L时,对油脂产量影响不显著(P>0.05)。葡萄糖浓度为10.00 g/L,硝酸钠为氮源油脂产量达到实验最高值0.84 g/L,其油脂脂肪酸组成主要由C16:0和C18:1等短链饱和脂肪酸和单不饱和脂肪酸组成,不饱和度值(DU)为61.98,相对偏低。  相似文献   

4.
碳氮源对转基因鱼腥藻Anabaena sp.PCC7120培养的影响   总被引:9,自引:2,他引:7  
对碳源、氮源种类和用量对转rhTNF-α基因鱼腥藻7120(Anabaena sp.PCC7120)培养的影响进行了研究,发现最适碳源为蔗糖,最适氮源为NaNO3,最佳用量分别为9g/L和2.25g/L,此时生物量远高于自养方式,达2.52g/L,比相同条件下在BG-11培养基培养高71.66%,ATNF-α表达量为16%-22%,生物活性为10^5U/mg。  相似文献   

5.
不同硝酸钾浓度对蔷薇藻生长及生理特性的影响   总被引:2,自引:0,他引:2  
蔷薇藻(Rhodella reticulata)是属于红藻门的一种海洋单细胞微藻,其生长过程中产生藻胆蛋白、胞外多糖等生物活性物质.研究了不同硝酸钾浓度对蔷薇藻生长代谢的影响,分析测定蔷薇藻比生长速率、胞外多糖产量、藻蓝蛋白含量、色素含量、硝酸还原酶活性和SOD活性等参数.结果表明,与无氮培养基相比,蔷薇藻在以硝酸钾为氮源,浓度为0.75 g/L的条件下生长最好,硝酸还原酶活性最大,分别得到最大的藻蓝蛋白产量(24 mg/L)和类胡萝卜素含量(1.42 mg/L);当KNO3浓度为7.5 g/L时,获得最高叶绿素a含量为1.91 mg/L;高氮源有利于产糖,当KNO3浓度为30 g/L时,得到最高胞外多糖产量为1.633 g/L;SOD活性随硝酸钾浓度增加而增大.  相似文献   

6.
【目的】为了研究不同磷、硫及二氧化碳浓度对标志链带藻(Desmodesmus insignis)生长与碳水化合物积累的影响,本实验以改良BG11培养基为基础,设计了8种不同初始K_2HPO_4浓度、8种不同初始MgSO_4浓度及4种二氧化碳浓度培养标志链带藻。【方法】采用干重法和苯酚-硫酸法分别测定其生物质浓度与总碳水化合物的含量。【结果】实验结果显示,在高磷浓度(0.460 mmol/L)下生物量达到最高为6.37 g/L,磷浓度为0.230 mmol/L (对照组)时总碳水化合物含量及单位体积产率达到最高,分别为45.40%(%干重)和0.20 g/(L·d)。不同初始MgSO_4浓度实验结果显示,高硫浓度有利于标志链带藻生长及碳水化合物的积累,生物量、总碳水化合物含量及单位体积产率分别在硫浓度为1.217 mmol/L、0.609 mmol/L和1.824 mmol/L时达到最高,分别为7.02 g/L、51.6%(%干重)及0.26 g/(L·d)。当二氧化碳浓度为3%(V/V)时,标志链带藻生物量、总碳水化合物含量及单位体积产率均达到最高,分别为6.81 g/L、44.03%和0.20 g/(L·d)。【结论】因此,磷浓度为0.230 mmol/L、硫浓度为1.824 mmol/L和二氧化碳浓度为3%时最有利于标志链带藻生长及碳水化合物的积累。  相似文献   

7.
李可文  宋涛  程小莲 《生态科学》2014,33(6):1147-1154
探讨了不同浓度碳源、氮源(N/P)、无机磷源、脲及卤虫干粉(或发酵液)卤水培养基对极端嗜盐杜氏藻生长的影响, 以期为更好地开发杜氏藻资源提供全面、系统的资料。结果表明: 通过物理方式直接通入CO2 补充极端嗜盐杜氏藻培养基, 能有效的保障极端嗜盐杜氏藻生长所需的碳源; 采用尿素作为藻培养基氮源效果较好, 无机磷浓度应维持较低水平; 卤虫发酵液较卤虫干粉能有效延长藻细胞高密度生长期, 极端嗜盐杜氏藻适宜培育浓度范围: 尿素浓度为30.00 mg·L–1-90.00 mg·L–1, N/P 维持在25 左右, NaH2PO4 浓度为2.71 mg·L–1-12.00 mg·L–1, 3.50 mg·L–1 最优; 卤虫发酵液浓度应在250.00 mg·L–1 以上。  相似文献   

8.
通过单因素试验分析不同碳源、氮源、无机盐对(Sphingomonas paucimobilisFJAT-5627)产胶量的影响,确定最适碳源、氮源、无机盐,并在单因素筛选试验的基础上,利用Box-Benhnken设计和响应面分析法对碳源、氮源和无机盐进行优化,得到少动鞘脂单胞菌产生结冷肢发酵培养基最佳优化组合.实验结果表明,少动鞘脂单胞菌产胶量发酵最适碳源、氮源和无机盐分别为淀粉、豆饼粉和KH2PO4.响应面法得到产胶量(Y)与碳源淀粉(x1)、氮源豆饼粉(x2)和无机盐KH2PO4(x3)的回归方程为:Y=13.87+0.54x1+0.22x2-0.42x3-3.26x12-1.85x22-1.51x32+0.053x1x2+0.067x1x3+0.4x2x3.优化培养基组合为:淀粉浓度为30g/L,豆饼粉浓度为5 g/L,KH2PO4的浓度为0.7g/L,且此组合下少动鞘脂假单胞发酵得到结冷胶可达23.87g/L.  相似文献   

9.
城市生活废水用于产油微藻培养   总被引:10,自引:2,他引:8  
将废水与产油微藻培养结合起来,可以实现废水的无害化处理,还可为微藻的培养提供营养组分和大量水源。利用高产油栅藻,以城市生活废水为水源,在气泡柱式光反应器中,考察了添加不同营养组分对栅藻细胞的生长、生物质产量、总脂含量以及氮磷的去除情况的影响。结果表明:生活废水非常适合于产油微藻的培养,利用生活废水进行微藻培养中,仅需补充添加无机氮、无机磷、柠檬酸铁铵以及微量元素。但这些营养组分的加入量对藻细胞的生长、生物量和油脂积累有重要影响。在优化的废水培养基中微藻细胞浓度可达8.0 g/L左右,远高于标准BG11培养基5.0 g/L的水平。微藻细胞对于无机氮与磷有着高的吸收能力,在废水中加入185.25 mg/L以下无机氮,16.1 mg/L以下无机磷的条件下培养3~4 d后,培养液水体中未检测到有氮磷残留。由此表明利用城市生活废水培养含油微藻可以在获得微藻油脂产品的同时实现水体的无害化处理。  相似文献   

10.
为了提高微藻的生物燃料生产效率及其在密闭环境中的碳氧转换效率,以两株荒漠微藻BG18-3、BE6-2和一株淡水蓝藻7924为研究对象,对其进行逆境条件培养,发现荒漠微藻BG18-3在各种逆境中表现最佳。在静态培养中,荒漠微藻BG1-3也具有明显的优势,其生物量干重达到0.26 g/L,硝态氮和磷酸盐去除率分别为36%和99%。在荒漠微藻BG18-3的通气培养中,生物干重量最高(3% CO2通气培养16天)达到2.63 g/L,生物量产率为164.0 mg/L·d,出口CO2浓度最低降到0.04%,O2净含量增加0.68%,这表明荒漠微藻BG18-3具有较高的碳氧转化效率,具有生产生物燃料的潜质。最后根据18s rDNA分析结果将荒漠微藻BG18-3鉴定为栅列藻Scenedesmus littoralis。  相似文献   

11.
氮、磷营养对雨生血球藻绿色细胞生长的影响   总被引:1,自引:1,他引:0  
采用BBM培养基,以雨生血球藻(Haematococcus pluvialis CG-11)为研究材料,通过测定细胞生长速率、叶绿素和类胡萝卜素含量、生物量和虾青素含量,探讨氮、磷营养对雨生血球藻营养细胞生长的影响.结果显示:H.pluvialis CG-11生长的适宜氮源形式是NaNO3和NH4NO3;适宜H.pluvialis CG-11生长的氮浓度为41.2mg·L-1,磷浓度为5.3~53.3mg·L-1.  相似文献   

12.
无机碳源对小球藻自养产油脂的影响   总被引:4,自引:1,他引:3  
旨在研究小球藻利用无机碳自养产油脂,考察了3种无机碳源 (Na2CO3、NaHCO3和CO2) 及其初始浓度对小球藻产油特性的影响。结果表明,小球藻能利用Na2CO3、NaHCO3和CO2产油;经Na2CO3、NaHCO3和CO2培养10 d后,随着每种无机碳源浓度的增加,小球藻产量均先增加后减少。小球藻经3种无机碳源培养后,其培养液pH值上升。最适宜的Na2CO3和NaHCO3添加量均为40 mmol/L,其生物量分别达到0.52 g/L和0.67 g/L,产油量分别达到0.19 g/L和0.22 g/L。在3种无机碳源中,CO2是最佳无机碳源,当CO2浓度为6%时,小球藻生长最快,生物量达2.42 g/L,产油量最高达0.72 g/L;当CO2浓度过低时,无机碳供应不足,油脂产量低;当CO2浓度过高时,培养液pH偏低,小球藻油脂积累受到抑制。Na2CO3和NaHCO3较CO2更有利于小球藻积累不饱和脂肪酸。  相似文献   

13.
14.
Batch cultures of algae grown at low (0.1 %) and elevated (2.0 %) concentrations of CO2, as well as in original BBM (Bold Basal Medium) and BBM modified with phosphate, EDTA and a combination of both, were exposed to cadmium (Cd(NO3)2·4H2O, 3CdSO4·8H2O and CdCl2·H2O) for 24 h. Regardless of the salt applied, the concentration-dependent relationships of Cd toxicity were found to be biphasic, suggesting the different affinity of target sites to cadmium. Nominal values of EC50 obtained for algae grown in original BBM and at low CO2 were 18.0, 16.44 and 15.37 mg·dm−3 for cadmium nitrate, sulphate and chloride, respectively. However, it was estimated that 97 % of the free cadmium in the added salts were bound by components of original BBM such as EDTA, phosphates, chloride and sulphate. The effect of Cd-salts at concentrations corresponding to EC50 values on algae were tested in media with 10-fold reduced phosphates (BBM-P), BBM depleted of EDTA (BBM-EDTA) and of both phosphates and EDTA (BBM-P-EDTA). For algae grown at low CO2 and BBM-P, cadmium was about 25 % less toxic than those applied in original BBM. Cadmium greatly inhibited (about 85 % of the control) the growth of algae cultured in BBM-EDTA; this effect was only slightly dependent on the CO2 concentration. Deficits of both EDTA and P led to effects similar to those brought about by the absence of EDTA only. The toxicity of cadmium depends on CO2 concentration only when algae are grown in original BBM. The growth of algae under high CO2 conditions was reduced considerably less (about 80% of control) compared with low CO2 concentrations (about 50 % of control). A relationship was found between the toxicity of cadmium salts and final pH values only in variants of low-CO2 grown algae; with an increase of medium pH the toxicity decreased. The results suggest that both growth conditions and the binding ability of the medium markedly affect the toxicity of cadmium towards microalgae.  相似文献   

15.
A Katoh  M Sonoda  H Katoh    T Ogawa 《Journal of bacteriology》1996,178(18):5452-5455
cotA of Synechocystis sp. strain PCC6803 was isolated as a gene that complemented a mutant defective in CO2 transport and is homologous to cemA that encodes a chloroplast envelope membrane protein (A. Katoh, K.S. Lee, H. Fukuzawa, K. Ohyama, and T. Ogawa, Proc. Natl. Acad. Sci. USA 93:4006-4010, 1996). A mutant (M29) constructed by replacing cotA in the wild-type (WT) Synechocystis strain with the omega fragment was unable to grow in BG11 medium (approximately 17 mM Na+) at pH 6.4 or at any pH in a low-sodium medium (100 microM Na+) under aeration with 3% (vol/vol) CO2 in air. The WT cells grew well in the pH range between 6.4 and 8.5 in BG11 medium but only at alkaline pH in the low-sodium medium. Illumination of the WT cells resulted in an extrusion followed by an uptake of protons. In contrast, only proton uptake was observed for the M29 mutant in the light without proton extrusion. There was no difference in sodium uptake activity between the WT and mutant. The mutant still possessed 51% of the WT CO2 transport activity in the presence of 15 mM NaCl. On the basis of these results we concluded that cotA has a role in light-induced proton extrusion and that the inhibition of CO2 transport in the M29 mutant is a secondary effect of the inhibition of proton extrusion.  相似文献   

16.
螺旋藻培养液吸收CO2特性的研究   总被引:7,自引:0,他引:7  
培养液中含有高浓度的HCO和CO,活跃进行的CO2,HCO和CO3种碳源形式相互转变的化学反应,构成了螺旋藻培养液不同于其它藻类培养液的显著特征。定量研究了CO2吸收速率与碳源浓度、温度、pH值、盐度、培养液运动状态的关系,利用培养液吸收CO2的物理模型解释了碳源浓度、pH值、培养液运动状态影响CO2吸收速率的机理。对化学反应是否影响CO2吸收速率这一有争议的问题进行了探讨,在肯定化学反应影响的前提下,指出化学反应的影响能否被观察到,显著程度如何,关键在于培养液的运动状态。根据实验结果,给出了利用“气罩法”添加CO2,所需气罩面积与产量、碳源浓度、培养液运动状态、培养面积数量关系的理论值。使用培养液的“CO2容量”的概念,说明利用CO2为碳源培养螺旋藻与其它藻类相比,可以得到更高的碳源利用率,从而产生更大的效益。  相似文献   

17.
污泥脱水液为污泥压缩过程产生的污水,因其含有N、P等营养物,可用于微藻的培养。但污泥脱水液碳氮比低,可利用碳源有限,影响微藻生长。本研究考察外加不同浓度(1 g/L,2 g/L,4 g/L,6 g/L)生物柴油副产物-粗甘油对污泥脱水液培养小球藻过程的影响。结果表明:1 g/L、2 g/L粗甘油浓度能促进小球藻生长,藻生物量为1.29 g/L、1.45 g/L;2 g/L粗甘油浓度下氨氮、总氮去除率达99.32%和97.52%。粗甘油被分解后易使培养体系pH降至7以下,使总磷去除率比对照组略低。外加1 g/L、2 g/L粗甘油组的COD去除量分别为553.00 mg/L和405.00 mg/L。藻细胞元素和傅里叶红外光谱分析表明补加粗甘油后藻细胞中C元素和H元素相对含量均明显增加,C元素含量约为对照组的1.5倍;2 g/L粗甘油组的蛋白质与脂类物质含量均高于对照组。MPBR半连续培养小球藻过程中,HRT为5 d时藻生物量维持在1.99~2.21 g/L,大约为批次生物量的1.50倍;氨氮、总氮、总磷、COD的去除率分别在96.26%~99.20%、92.44%~94.04%、53.63%~58.58%、59.44%~65.57%。  相似文献   

18.
以树干毕赤酵母和酿酒酵母为发酵菌株,酸性蒸汽爆破玉米秸秆预水解液和纯糖模拟液为C源,采用固定化酵母细胞的方法,研究了酸爆玉米秸秆预水解液初始pH、N源种类及其浓度、3种发酵模式对树干毕赤酵母戊糖发酵的影响。结果表明:玉米秸秆预水解液适合发酵的初始pH范围为6.0~7.0;1.0 g/L的(NH4)2SO4作为N源,在40 g/L葡萄糖和25 g/L木糖培养基中发酵24 h,糖利用率达到99.47%,乙醇质量浓度为24.72 g/L,优于尿素和蛋白胨作为N源;3种模式的发酵体系中,以游离树干毕赤酵母和固定化酿酒酵母发酵性能最好,糖利用率和乙醇得率分别为99.43%和96.39%。  相似文献   

19.

The key factors influencing the production of C-phycocyanin (C-PC) and extracellular polymeric substances (EPS) by photoautotrophic culture of Arthrospira sp. were optimized using Taguchi method. Six factors were varied at either three or two levels as follows: light intensity at three levels; three initial culture pHs; two species of Arthrospira; three concentrations of Zarrouk’s medium; three rates of aeration of the culture with air mixed with 2% v/v carbon dioxide; and two incubation temperatures. All cultures ran for 14 days. The optimal conditions for the production of C-PC and EPS were different. For both products, the best cyanobacterium proved to be Arthrospira maxima IFRPD1183. The production of C-PC was maximized with the following conditions: a light intensity of 68 µmol photons m−2 s−1 (a diurnal cycle of 16-h photoperiod and 8-h dark period), an initial pH of 10, the full strength (100%) Zarrouk’s culture medium, an aeration rate of 0.6 vvm (air mixed with 2% v/v CO2) and a culture temperature of 30 °C. The concentration of Zarrouk’s medium was the most important factor influencing the final concentration of C-PC. The optimal conditions for maximal production of EPS were as follows: a light intensity of 203 µmol photons m−2 s−1 with the earlier specified light–dark cycle; an initial pH of 9.5; a 50% strength of Zarrouk’s medium; an aeration rate of 0.2 vvm (air mixed with 2% v/v CO2); and a temperature of 35 °C. Production of C-PC and EPS in raceway ponds is discussed.

  相似文献   

20.
Butyric acid fermentation by Clostridium tyrobutyricum ATCC 25755 using glucose or brown algae as a carbon source was carried out. Initially, different fermentation modes (batch, fed-batch, and semi-continuous) at pH 6 and 37°C were compared using a model medium containing glucose as a carbon source. By feeding the whole medium containing 40 ∼ 50 and 30 g/L of glucose into the fed-batch and semi-continuous fermentations, very similar butyrate yields (0.274 and 0.252 g butyrate/g glucose, respectively) and productivities (0.362 and 0.355 g/L/h, respectively) were achieved. The highest butyrate concentration was about 50 g/L, which was observed in the fed-batch fermentation with whole medium feeding. However, semi-continuous fermentation sustained a longer fermentation cycle than the fed-batch fermentation due to end-product and metabolic waste inhibition. The established conditions were then applied to the fermentation using brown algae, Laminaria japonica and Undaria pinnatifida, as substrates for butyric acid fermentation. To hydrolyze brown algae, 7.5 ∼ 10% (w/v) dried brown algae powder was suspended in 1% (w/v) NaOH or 0.5 ∼ 2.5% (w/v) H2SO4 and then autoclaved at 121°C for 30 ∼ 90 min. The resulting butyrate concentration was about 11 g/L, which was produced from 100 g/L of L. japonica autoclaved for 60 min in 1.5% H2SO4 acid solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号