首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 318 forward mutations induced by ethylmethanesulphonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in the SUP4-o gene of the yeast Saccharomyces cerevisiae was characterized by DNA sequence analysis. Only base-pair substitutions were detected among the mutations examined and, for both agents, the majority (greater than 96%) were G.C to A.T. transitions. The remaining changes included A.T to G.C transitions and transversions at G.C sites. For EMS, two of the transversions were accompanied by nearby G.C to A.T transitions. There was considerable overlap of the sites within the SUP4-o gene that were mutated by EMS and MNNG and of the sites that each agent failed to mutate. However, EMS and MNNG mutagenesis differed with respect to the frequencies at which mutations were recovered at G.C pairs where the guanine is flanked (5') by a purine or pyrimidine. EMS exhibited no preference for either type of site, whereas a G.C site was 12-fold or fivefold more likely to be mutated by MNNG if preceded by a 5' adenine or guanine, respectively, than if flanked by a 5' pyrimidine. Finally, neither EMS nor MNNG mutagenesis showed a preference for G.C sites having the guanine on the non-transcribed strand.  相似文献   

2.
Defects in the RAD52 gene of the yeast Saccharomyces cerevisiae confer a mutator phenotype. To characterize this effect in detail, a collection of 238 spontaneous SUP4-o mutations arising in a strain having a disrupted RAD52 gene was analyzed by DNA sequencing. The resulting mutational spectrum was compared to that derived from an examination of 222 spontaneous mutations selected in a nearisogenic wild-type (RAD52) strain. This comparison revealed that the mutator phenotype was associated with an increase in the frequency of base-pair substitutions. All possible types of substitution were detected but there was a reduction in the relative fraction of A.T----G.C transitions and an increase in the proportion of G.C----C.G transversions. These changes were sufficient to cause a twofold greater preference for substitutions at G.C sites in the rad52 strain despite a decrease in the fraction of G.C----T.A transversions. There were also considerable differences between the distributions of substitutions within the SUP4-o gene. Base-pair changes occurred at fewer sites in the rad52 strain but the mutated sites included several that were not detected in the RAD52 background. Only two of the four sites that were mutated most frequently in the rad52 strain were also prominent in the wild-type strain and mutation frequencies at almost all sites common to both strains were greater for the rad52 derivative. Although single base-pair deletions occurred in the two strains with similar frequencies, several classes of mutation that were recovered in the wild-type background including multiple base-pair deletions, insertions of the yeast transposable element Ty, and more complex changes, were not detected in the rad52 strain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Inactivation of the Saccharomyces cerevisiae RAD18 gene confers a mutator phenotype. To determine the specificity of this effect, a collection of 212 spontaneous SUP4-o mutants arising in a rad18 strain was characterized by DNA sequencing. Comparison of the resulting mutational spectrum with that for an isogenic wild-type (RAD18) strain revealed that the rad18 mutator specifically enhanced the frequency of single base pair substitutions. Further analysis indicated that an increase in the frequency of G.C----T.A transversions accounted for the elevated SUP4-o mutation frequency. Thus, rad18 is the first eucaryotic mutator found to generate only a particular base pair substitution. The majority of G.C pairs that were not mutated in the rad18 background were at sites where G.C----T.A events can be detected in SUP4-o, suggesting that DNA sequence context influences the rad18 mutator effect. Transformation of heteroduplex plasmid DNAs into the two strains demonstrated that the rad18 mutator did not reduce the efficiency of correcting G-A or C-T mismatches to G.C pairs or preferentially correct the mismatches to A.T pairs. We propose that the RAD18 gene product might contribute to the fidelity of DNA replication in S. cerevisiae by involvement in a process that serves to limit the formation of G-A and C-T mismatches at template guanine and cytosine sites during DNA synthesis.  相似文献   

4.
Summary Nitrogen mustard (HN2) mutagenesis of a plasmid-borne copy of the Saccharomyces cerevisiae SUP4-o gene was examined in a repair-proficient yeast strain and isogenic derivatives defective for excision (radl) or DNA double-strand break (rad52) repair. The excision repair deficiency sensitized the cells to killing by HN2 and abolished mutation induction. Inactivation of RAD52 had no influence on the lethality of HN2 treatment but diminished the induced mutation frequency by 50% at all doses tested. DNA sequence analysis of HN2-induced SUP4-o mutations suggested that RAD52 contributed to the production of basepair substitutions at G·C sites. The rad52 defect appeared to alter the distribution of G·C A·T transitions in SUP4-o relative to the distribution for the wild-type strain. This difference did not seem to be due to an effect of RAD52 on the relative fractions of HN2-induced transitions at localized (flanked by A·T pairs) or contiguous (flanked by at least one G·C pair) G·C sites but instead to an influence on the strand specificity of HN2 mutagenesis. In the repair-proficient strain, the transitions showed a small bias for sites having the guanine on the transcribed strand and this preference was eliminated by inactivation of RAD52.  相似文献   

5.
X. Kang  F. Yadao  R. D. Gietz    B. A. Kunz 《Genetics》1992,130(2):285-294
The RAD6 gene of the yeast Saccharomyces cerevisiae encodes an enzyme that conjugates ubiquitin to other proteins. Defects in RAD6 confer a mutator phenotype due, in part, to an increased rate of transposition of the yeast Ty element. To further delineate the role of protein ubiquitination in the control of spontaneous mutagenesis in yeast, we have characterized 202 mutations that arose spontaneously in the SUP4-o gene carried on a centromere vector in a RAD6 deletion strain. The resulting mutational spectrum was compared to that for 354 spontaneous SUP4-o mutations isolated in the isogenic wild-type parent. This comparison revealed that the rad6 mutator enhanced the rate of single base-pair substitution, as well as Ty insertion, but did not affect the rates of the other mutational classes detected. Relative to the wild-type parent, Ty inserted at considerably more SUP4-o positions in the rad6 strain with a significantly smaller fraction detected at a transposition hotspot. These findings suggest that, in addition to the rate of transposition, protein ubiquitination might influence the target site specificity of Ty insertion. The increase in the substitution rate accounted for approximately 90% of the rad6 mutator effect but only the two transitions and the G. C----T.A transversion were enhanced. Analysis of the distribution of these events within SUP4-o suggested that the site specificity of the substitutions was influenced by DNA sequence context. Transformation of heteroduplex plasmid DNAs into the two strains demonstrated that the rad6 mutator did not reduce the efficiency of correcting mismatches that could give rise to the transitions or transversion nor did it bias restoration of the mismatches to the incorrect base-pairs. These results are discussed in relation to possible mechanisms that might link ubiquitination of proteins to spontaneous mutation rates.  相似文献   

6.
Disruption of RAD1, a gene controlling excision repair in the yeast Saccharomyces cerevisiae, increased the frequency of spontaneous forward mutation in a plasmid-borne copy of the SUP4-o gene. To characterize this effect in detail, a collection of 249 SUP4-o mutations arising spontaneously in the rad1 strain was analyzed by DNA sequencing. The resulting mutational spectrum was compared with that derived from an examination of 322 spontaneous SUP4-o mutations selected in an isogenic wild-type (RAD1) strain. This comparison revealed that the rad1 mutator phenotype was associated with increases in the frequencies of single-base-pair substitution, single-base-pair deletion, and insertion of the yeast retrotransposon Ty. In the rad1 strain, the relative fractions of these events and their distributions within SUP4-o exhibited features similar to those for spontaneous mutagenesis in the isogenic RAD1 background. The increase in the frequency of Ty insertion argues that Ty transposition can be activated by unrepaired spontaneous DNA damage, which normally would be removed by excision repair. We discuss the possibilities that either translesion synthesis, a reduced fidelity of DNA replication, or a deficiency in mismatch correction might be responsible for the majority of single-base-pair events in the rad1 strain.  相似文献   

7.
The molecular nature of 254 nm ultraviolet light (UV)-induced mutations at the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus in UV24 Chinese hamster ovary (CHO) cells, which are defective in nucleotide excision repair, was determined. Sequence analysis of 19 hprt mutants showed that single base substitutions (9 mutants) and tandem base changes (7 mutants) dominated the UV mutation spectrum in this cell line. Sixty-five percent of the base substitutions were GC greater than AT transitions, whereas the rest consisted of transitions and transversions at AT base pairs. Analysis of the distribution of dipyrimidine sites over the two DNA strands, where the photoproducts causing these mutations presumably were formed, showed that 12 out of 14 mutations were located in the transcribed strand of the hprt gene. A similar strand distribution of mutagenic photoproducts as in UV24 has previously been found in two other UV-sensitive Chinese hamster cell lines (V-H1 and UV5), indicating that under defective nucleotide excision repair conditions the induction of mutations is strongly biased towards lesions in the transcribed strand of the hprt gene. A plausible explanation for this phenomenon is that during DNA replication large differences exist in the error rate with which DNA polymerase(s) bypass lesions in the templates for the leading and lagging strand, respectively.  相似文献   

8.
H. Roche  R. D. Gietz    B. A. Kunz 《Genetics》1994,137(3):637-646
The yeast REV3 gene has been predicted to encode a DNA polymerase specializing in translesion synthesis. This polymerase likely participates in spontaneous mutagenesis, as rev3 mutants have an antimutator phenotype. Translesion synthesis also may be necessary for the mutator caused by a RAD1 (nucleotide excision repair) deletion (rad1Δ). To further examine the role of REV3 in spontaneous mutagenesis, we characterized SUP4-o mutations that arose spontaneously in strains having combinations of normal or mutant REV3 and RAD1 alleles. The largest fraction of the rev3Δ-dependent mutation rate decrease was observed for single base-pair substitutions and deletions, although the rates of all mutational classes detected in the RAD1 background were reduced by at least 30%. Interestingly, inactivation of REV3 was associated with a doubling of the number of sites at which the retrotransposon Ty inserted. rev3Δ also greatly diminished the magnitude of the rad1Δ mutator, but not to the rev3Δ antimutator level, implicating REV3-dependent and independent processes in the rad1Δ mutator effect. However, the specificity of the rev3Δ antimutator suggested that the same REV3-dependent processes gave rise to the majority of spontaneous mutations in the RAD1 and rad1Δ strains.  相似文献   

9.
Mak WB  Fix D 《Mutation research》2008,638(1-2):154-161
We investigated the effect of altering the DNA sequence surrounding a mutable target site on the production of ultraviolet light (UV) induced mutations. Site-directed base substitutions were incorporated on both sides of a TAA sequence encoding a UAA nonsense defect in the tyrA14 allele of Escherichia coli. This allele is readily revertable by UV and a total of eight different base substitution mutations can be recovered. Five different strains harboring DNA sequences allowing the formation of 5'-TT, 5'-CT and 5'-TA* photoproducts were constructed and exposed to UV. DNA sequence analysis was used to determine the spectrum of the revertants that were recovered. The results showed that changes at the 3'-base of a TT site were predominantly T to C transitions and T to A transversions. However, unlike the TT site, a 5'-CT site produced a relatively high frequency of T to G transversions. In addition, T to A transversions that could not have been targeted by a cyclobutane-type or [6-4]-type pyrimidine dimer were produced; this result suggested that these mutations may be targeted by a TA* photoproduct. Also, a distinct strand bias was noted for two mechanistically identical base substitutions in a strain having a palindromic target sequence; this result may reflect an unequal damage distribution or processing of photoproducts as a consequence of asymmetric DNA replication. Finally, our results show that DNA sequences expected to allow the greatest density of UV-induced DNA damage produce the highest mutation frequencies. Overall, these findings provide new insights regarding the role of DNA photoproducts in UV mutagenesis.  相似文献   

10.
Development of a yeast system to assay mutational specificity   总被引:11,自引:0,他引:11  
We have developed a system wherein DNA alterations occurring in a target gene in the yeast Saccharomyces cerevisiae can be determined by DNA sequencing. The target gene, SUP4-o, an ochre suppressor allele of a yeast tyrosine tRNA gene, has been inserted into a shuttle vector (YCpMP2) which is maintained in yeast at a copy number of one per cell Mutations in SUP4-o are selected by virtue of their inactivation of suppressor activity. Rapid DNA preparations from these mutants are used to transform an appropriate bacterial strain. Since YCpMP2 also carries the M13 phage replication origin, superinfection of bacterial cells containing the plasmid with wild-type M13 phage yields single stranded YCpMP2 DNA suitable for dideoxynucleotide chain termination sequencing. We have used this system to examine mutations arising spontaneously in the SUP4-o gene. The spontaneous mutants occurred at a frequency of 3.2 X 10(-6)/viable cell, corresponding to a rate of 2.7 X 10(-7) events/cell division. Following bacterial transformation, 16% of the recovered plasmids tested displayed altered gel mobility consistent with loss of significant portions of the plasmid. Hybridization analysis of total yeast DNA and use of purified YCpMP2 revealed that these very large deletions were not generated in yeast but were associated with bacterial transformation. Among the SUP4-o mutants analyzed by DNA sequencing, we identified each type of single base pair substitution (transitions and transversions), small deletions of varying length (1-32 base pairs) and more extensive deletions of undetermined size. These results demonstrate that the SUP4-o system can be used to detect various types of mutation at numerous sites in a single eukaryotic gene and to characterize the DNA sequence changes responsible for the mutations selected.  相似文献   

11.
Disruption of the dCMP deaminase (DCD1) gene, or provision of excess dTMP to a nucleotide-permeable strain, produced dramatic increases in the dCTP or dTTP pools, respectively, in growing cells of the yeast Saccharomyces cerevisiae. The mutation rate of the SUP4-o gene was enhanced 2-fold by the dCTP imbalance and 104-fold by the dTTP imbalance. 407 SUP4-o mutations that arose under these conditions, and 334 spontaneous mutations recovered in an isogenic strain having balanced DNA precursor levels, were characterized by DNA sequencing and the resulting mutational spectra were compared. Significantly more (greater than 98%) of the changes resulting from nucleotide pool imbalance were single base-pair events, the majority of which could have been due to misinsertion of the nucleotides present in excess. Unexpectedly, expanding the dCTP pool did not increase the fraction of A.T----G.C transitions relative to the spontaneous value nor did enlarging the dTTP pool enhance the proportion of G.C----A.T transitions. Instead, the elevated levels of dCTP or dTTP were associated primarily with increases in the fractions of G.C----C.G or A.T----T.A. transversions, respectively. Furthermore, T----C, and possibly A----C, events occurred preferentially in the dcd1 strain at sites where dCTP was to be inserted next. C----T and A----T events were induced most often by dTMP treatment at sites where the next correct nucleotide was dTTP or dGTP (dGTP levels were also elevated by dTMP treatment). Finally, misinsertion of dCTP or dTTP did not exhibit a strand bias. Collectively, our data suggest that increased levels of dCTP and dTTP induced mutations in yeast via nucleotide misinsertion and inhibition of proofreading but indicate that other factors must also be involved. We consider several possibilities, including potential roles for the regulation and specificity of proofreading and for mismatch correction.  相似文献   

12.
Mutations induced by ultraviolet light   总被引:12,自引:0,他引:12  
The different ultraviolet (UV) wavelength components, UVA (320-400 nm), UVB (280-320 nm), and UVC (200-280 nm), have distinct mutagenic properties. A hallmark of UVC and UVB mutagenesis is the high frequency of transition mutations at dipyrimidine sequences containing cytosine. In human skin cancers, about 35% of all mutations in the p53 gene are transitions at dipyrimidines within the sequence 5'-TCG and 5'-CCG, and these are localized at several mutational hotspots. Since 5'-CG sequences are methylated along the p53 coding sequence in human cells, these mutations may be derived from sunlight-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. Cyclobutane pyrimidine dimers (CPDs) form preferentially at dipyrimidines containing 5-methylcytosine when cells are irradiated with UVB or sunlight. In order to define the contribution of 5-methylcytosine to sunlight-induced mutations, the lacI and cII transgenes in mouse fibroblasts were used as mutational targets. After 254 nm UVC irradiation, only 6-9% of the base substitutions were at dipyrimidines containing 5-methylcytosine. However, 24-32% of the solar light-induced mutations were at dipyrimidines that contain 5-methylcytosine and most of these mutations were transitions. Thus, CPDs forming preferentially at dipyrimidines with 5-methylcytosine are responsible for a considerable fraction of the mutations induced by sunlight in mammalian cells. Using mouse cell lines harboring photoproduct-specific photolyases and mutational reporter genes, we showed that CPDs (rather than 6-4 photoproducts or other lesions) are responsible for the great majority of UVB-induced mutations. An important component of UVB mutagenesis is the deamination of cytosine and 5-methylcytosine within CPDs. The mutational specificity of long-wave UVA (340-400 nm) is distinct from that of the shorter wavelength UV and is characterized mainly by G to T transversions presumably arising through mechanisms involving oxidized DNA bases. We also discuss the role of DNA damage-tolerant DNA polymerases in UV lesion bypass and mutagenesis.  相似文献   

13.
Previously we compared the mutational specificities of polychromatic UVB (285-320 nm) and UVC (254 nm) light in the SUP4-o gene of the yeast Saccharomyces cerevisiae. Striking similarities in the types and distributions of induced SUP4-o mutations were consistent with roles for cyclobutane dimers and pyrimidine(6-4)pyrimidone photoproducts in mutation induction by UVB. To assess the relative importance of cyclobutane dimers, we have now examined the effect of photoreactivation (PR), which specifically reverses these lesions, on UVB and UVC induction of SUP4-o mutations. PR reduced the frequencies of both UVB and UVC mutagenesis by approximately 75%. Collections of 138 and 158 SUP4-o mutants induced by treatment with UVB plus PR or UVC plus PR, respectively, were characterized by DNA sequencing and the results were compared to those for 208 UVB and 211 UVC-induced mutants analyzed earlier. PR decreased the frequency of UVB-induced G.C----A.T transitions by 85%, diminished the substitution frequencies at individual sites by 64% on average, and reduced the mutation frequencies at the five UVB hotspots by 87%. A more detailed examination revealed that the transition frequencies at the 3' base of 5'-TC-3' and 5'-CC-3' sequences were decreased by 90% and 72%, respectively. Finally, PR appeared to occur to the same extent on both the transcribed and non-transcribed strands of SUP4-o. Similar results were obtained for PR following UVC irradiation. Our findings indicate that cyclobutane dimers are responsible for the majority of UVB mutagenesis in yeast.  相似文献   

14.
Using the CAN1 gene in haploid cells or heterozygous diploid cells, we characterized the effects of mutations in the RAD52 and REV3 genes of Saccharomyces cerevisiae in spontaneous mutagenesis. The mutation rate was 5-fold higher in the haploid rad52 strain and 2.5-fold lower in rev3 than in the wild-type strain. The rate in the rad52 rev3 strain was as low as in the wild-type strain, indicating the rad52 mutator phenotype to be dependent on REV3. Sequencing indicated that G:C-->T:A and G:C-->C:G transversions increased in the rad52 strain and decreased in the rev3 and rad52 rev3 strains, suggesting a role for REV3 in transversion mutagenesis. In diploid rev3 cells, frequencies of can1Delta::LEU2/can1Delta::LEU2 from CAN1/can1Delta::LEU2 due to recombination were increased over the wild-type level. Overall, in the absence of RAD52, REV3-dependent base-substitutions increased, while in the absence of REV3, RAD52-dependent recombination events increased. We further found that the rad52 mutant had an increased rate of chromosome loss and the rad52 rev3 double mutant had an enhanced chromosome loss mutator phenotype. Taken together, our study indicates that the error-free RAD52 pathway and error-prone REV3 pathway for rescuing replication fork arrest determine spontaneous mutagenesis, recombination, and genome instability.  相似文献   

15.
O6-methylguanine (O6-MeG) DNA methyltransferase (MTase) removes the methyl group from a DNA lesion and directly restores DNA structure. It has been shown previously that bacterial and yeast cells lacking such MTase activity are not only sensitive to killing and mutagenesis by DNA methylating agents, but also exhibit an increased spontaneous mutation rate. In order to understand molecular mechanisms of endogenous DNA alkylation damage and its effects on mutagenesis, we determined the spontaneous mutational spectra of the SUP4-o gene in various Saccharomyces cerevisiae strains. To our surprise, the mgt1 mutant deficient in DNA repair MTase activity exhibited a significant increase in G:C-->C:G transversions instead of the expected G:C-->A:T transition. Its mutational distribution strongly resembles that of the rad52 mutant defective in DNA recombinational repair. The rad52 mutational spectrum has been shown to be dependent on a mutagenesis pathway mediated by REV3. We demonstrate here that the mgt1 mutational spectrum is also REV3-dependent and that the rev3 deletion offsets the increase of the spontaneous mutation rate seen in the mgt1 strains. These results indicate that the eukaryotic mutagenesis pathway is directly involved in cellular processing of endogenous DNA alkylation damage possibly by the translesion bypass of lesions at the cost of G:C-->C:G transversion mutations. However, the rev3 deletion does not affect methylation damage-induced killing and mutagenesis of the mgt1 mutant, suggesting that endogenous alkyl lesions may be different from O6-MeG.  相似文献   

16.
The nucleotide sequences of closely related members of a gene family can be used to investigate spontaneous mutations. Here we analyse the sequences of different yeast invertase genes which are more than 93% identical in the coding region and share some very similar, but not identical sequences in the noncoding flanking regions. Since all except one of the invertase genes are active, most of the base substitutions are silent. Within the coding region the base substitutions are unevenly distributed, indicating that parts of the genes were homogenized, probably via gene conversion. Transitions occurred more frequently than transversions in both, coding and noncoding regions. In the coding region pyrimidine transitions were the most abundant event due to silent changes mainly in the third codon position. In the noncoding region pyrimidine and purine transitions were found at equal frequencies. Transversions inverting base pairs (A-T and G-C) outnumber transversions changing base pairs (A-C and G-T). While the spectrum of mutations in the coding region is influenced by selective pressure to maintain the amino acid sequence, the spectrum in the noncoding region may be much less affected by selective pressure.  相似文献   

17.
We have analyzed the DNA sequence changes in a total of 409 ultraviolet light-induced mutations in the lacI gene of Escherichia coli: 227 in a Uvr+ and 182 in a UvrB- strain. Both differences and similarities were observed. In both strains the mutations were predominantly (60 to 75%) base substitutions, followed by smaller contributions of single-base frameshifts, deletions and frameshift hotspot mutations. The base substitutions proved largely similar in the two strains but differences were observed among the single-base frameshifts, the deletions and the hotspot mutations. Among the base substitutions, both transitions (72.5%) and transversions (27.5%) were observed. The largest single group was G.C----A.T (60% of all base substitutions). The sites where G.C----A.T changes occurred were strongly correlated (97.5%) with sequences of adjacent pyrimidines, indicating mutation targeted ultraviolet photoproducts. Comparable amounts of mutation occurred at cytosine/cytosine and (mixed) cytosine/thymine sites. From an analysis of the prevalence of mutation at either the 5' or 3' side of a dipyrimidine, we conclude that both cyclobutane dimers and (6-4) lesions may contribute to mutation. Despite the general similarity of the base-substitution spectra between the wild-type and excision-defective strains, a number of sites were uniquely mutable in the UvrB- strain. Analysis of their surrounding DNA sequences suggested that, in addition to damage directly at the site of mutation, the potential for nearby opposite-strand damage may be important in determining the mutability of a site. The ultraviolet light-induced frameshift mutations were largely single-base losses. Inspection of the DNA sequences at which the frameshifts occurred suggested that they resulted from targeted mutagenesis, probably at cyclobutane pyrimidine dimers. The prevalence of frameshift mutations at homodimers (TT or CC) suggests that their formation involves local misalignment (slippage) and that base-pairing properties are partially retained in cyclobutane dimers. While the frameshift mutations in the Uvr+ strain were distributed over many different sites, more than half in the UvrB- strain were concentrated at a single site. Ultraviolet light-induced deletions as well as frameshift hotspot mutations (+/- TGGC at positions 620 to 632) are considered to be examples of untargeted or semitargeted mutagenesis. Hotspot mutations in the Uvr+ strain showed an increased contribution by (-)TGGC relative to (+)TGGC, indicating that ultraviolet light may specifically promote the loss of the four bases.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The mutation spectrum of mtDNA hypervariable segment 1 (HVS1) was compared for east chimpanzee Pan troglodytes schweigfurthi and human. The two HVS1 had much the same nucleotide composition, and their mutation spectra were similar in major characteristics (substantial prevalence of transitions over transversions, pyrimidine transitions over purine ones, and C --> T over T --> C). DNA strand displacement (dislocation) during replication was identified as a major mechanism of context-dependent mutagenesis in human and chimpanzee mtDNAs. Nucleotide positions with mutations fitting the model of dislocation mutagenesis accounted for 21% of all variable positions in the chimpanzee HVS1. Variable motifs proved to be similar in the chimpanzee and human HVS1. Comparison of the Neanderthal and modern human HVS1 nucleotide sequences showed that most variable nucleotides are in DNA sites allowing context-dependent mutagenesis.  相似文献   

19.
Wang J  Yu S  Jiao S  Lv X  Ma M  Zhu BZ  Du Y 《Mutation research》2012,729(1-2):16-23
Tetrachlorohydroquinone (TCHQ) is a major toxic metabolite of the widely used wood preservative, pentachlorophenol (PCP), and it has also been implicated in PCP genotoxicity. However, the underlying mechanisms of genotoxicity and mutagenesis induced by TCHQ remain unclear. In this study, we examined the genotoxicity of TCHQ by using comet assays to detect DNA breakage and formation of TCHQ-DNA adducts. Then, we further verified the levels of mutagenesis by using the pSP189 shuttle vector in A549 human lung carcinoma cells. We demonstrated that TCHQ causes significant genotoxicity by inducing DNA breakage and forming DNA adducts. Additionally, DNA sequence analysis of the TCHQ-induced mutations revealed that 85.36% were single base substitutions, 9.76% were single base insertions, and 4.88% were large fragment deletions. More than 80% of the base substitutions occurred at G:C base pairs, and the mutations were G:C to C:G, G:C to T:A or G:C to A:T transversions and transitions. The most common types of mutations in A549 cells were G:C to A:T (37.14%) and A:T to C:G transitions (14.29%) and G:C to C:G (34.29%) and G:C to T:A (11.43%) transversions. We identified hotspots at nucleotides 129, 141, and 155 in the supF gene of plasmid pSP189. These mutation hotspots accounted for 63% of all single base substitutions. We conclude that TCHQ induces sequence-specific DNA mutations at high frequencies. Therefore, the safety of using this product would be carefully examined.  相似文献   

20.
We examined whether strand identity with respect to DNA replication influences strand bias for 8-oxo-7,8-dihydroguanine (8-oxoG) mutagenesis. The specificity of 8-oxoG mutagenesis was determined in a mutM mutY or a mutT strain carrying the supF gene on one of two vectors that differed only in the orientation of supF with respect to a unique origin of replication. Most of the supF mutations in the mutM mutY strain were base substitutions (67%), predominantly G:C-->T:A transversions (> 64%), while the majority in the mutT strain were base substitutions (> 92%), predominantly A:T-->C:G transversions (> 91%). The distributions of frequently mutated sites of G:C-->T:A and A:T-->C:G transversions in the supF gene in the mutM mutY and mutT strains, respectively, did not differ markedly between the two vectors. These results suggest that gene orientation is not an important determinant of the strand bias of 8-oxoG mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号