首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  完全免费   2篇
  1998年   1篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
排序方式: 共有6条查询结果,搜索用时 46 毫秒
1
1.
2.
Genetic control of chromosome synapsis in yeast meiosis   总被引:17,自引:0,他引:17  
Both meiosis-specific and general recombination functions, recruited from the mitotic cell cycle, are required for elevated levels of recombination and for chromosome synapsis (assembly of the synaptonemal complex) during yeast meiosis. The meiosis-specific SPO11 gene (previously shown to be required for meiotic recombination) has been isolated and shown to be essential for synaptonemal complex formation but not for DNA metabolism during the vegetative cell cycle. In contrast, the RAD52 gene is required for mitotic and meiotic recombination but not for synaptonemal complex assembly. These data suggest that the synaptonemal complex may be necessary but is clearly not sufficient for meiotic recombination. Cytological analysis of spread meiotic nuclei demonstrates that chromosome behavior in yeast is comparable with that observed in larger eukaryotes. These spread preparations support the immunocytological localization of specific proteins in meiotic nuclei. This combination of genetic, molecular cloning, and cytological approaches in a single experimental system provides a means of addressing the role of specific gene products and nuclear structures in meiotic chromosome behavior.  相似文献
3.
A collection of 196 spontaneous mutations in the SUP4-o gene of the yeast Saccharomyces cerevisiae was analyzed by DNA sequencing. The classes of mutation identified included all possible types of base-pair substitution, deletions of various lengths, complex alterations involving multiple changes, and insertions of transposable elements. Our findings demonstrate that at least several different mechanisms are responsible for spontaneous mutagenesis in S. cerevisiae.  相似文献
4.
Development of a yeast system to assay mutational specificity   总被引:11,自引:0,他引:11  
We have developed a system wherein DNA alterations occurring in a target gene in the yeast Saccharomyces cerevisiae can be determined by DNA sequencing. The target gene, SUP4-o, an ochre suppressor allele of a yeast tyrosine tRNA gene, has been inserted into a shuttle vector (YCpMP2) which is maintained in yeast at a copy number of one per cell Mutations in SUP4-o are selected by virtue of their inactivation of suppressor activity. Rapid DNA preparations from these mutants are used to transform an appropriate bacterial strain. Since YCpMP2 also carries the M13 phage replication origin, superinfection of bacterial cells containing the plasmid with wild-type M13 phage yields single stranded YCpMP2 DNA suitable for dideoxynucleotide chain termination sequencing. We have used this system to examine mutations arising spontaneously in the SUP4-o gene. The spontaneous mutants occurred at a frequency of 3.2 X 10(-6)/viable cell, corresponding to a rate of 2.7 X 10(-7) events/cell division. Following bacterial transformation, 16% of the recovered plasmids tested displayed altered gel mobility consistent with loss of significant portions of the plasmid. Hybridization analysis of total yeast DNA and use of purified YCpMP2 revealed that these very large deletions were not generated in yeast but were associated with bacterial transformation. Among the SUP4-o mutants analyzed by DNA sequencing, we identified each type of single base pair substitution (transitions and transversions), small deletions of varying length (1-32 base pairs) and more extensive deletions of undetermined size. These results demonstrate that the SUP4-o system can be used to detect various types of mutation at numerous sites in a single eukaryotic gene and to characterize the DNA sequence changes responsible for the mutations selected.  相似文献
5.
6.
Here we demonstrate that the Saccharomyces cerevisiae DNA ligase activity, which we previously designated DNA ligase II, is encoded by the genomic DNA sequence YOR005c. Based on its homology with mammalian LIG4, this yeast gene has been named DNL4 and the enzyme activity renamed Dnl4. In agreement with others, we find that DNL4 is not required for vegetative growth but is involved in the repair of DNA double-strand breaks by non-homologous end joining. In contrast to a previous report, we find that a dnl4 null mutation has no effect on sporulation efficiency, indicating that Dnl4 is not required for proper meiotic chromosome behavior or subsequent ascosporogenesis in yeast. Disruption of the DNL4 gene in one strain, M1-2B, results in temperature-sensitive vegetative growth. At the restrictive temperature, mutant cells progressively lose viability and accumulate small, nucleated and non-dividing daughter cells which remain attached to the mother cell. This novel temperature-sensitive phenotype is complemented by retransformation with a plasmid-borne DNL4 gene. Thus, we conclude that the abnormal growth of the dnl4 mutant strain is a synthetic phenotype resulting from Dnl4 deficiency in combination with undetermined genetic factors in the M1-2B strain background.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号