首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
种蛋内鸡胚含有潜在的胚胎干细胞(BCs)或原生殖细胞(PGCs),是目前主要的转基因鸡研究方法。采用绿色荧光蛋白(GFP)基因的pLenti6/v5-DEST-GFP慢病毒表达载体,白来航鸡与伊萨鸡种蛋,结合种蛋赤道面开窗专利技术,对含这两种细胞胚的转基因技术进行了比较研究:转染白来航鸡囊胚,孵化13天时,GFP基因的PCR检出率为64.7%,孵化率极低;转染孵化72h伊萨鸡胚血液循环中PGCs,实验蛋孵化率为35.0%,在出壳后死亡的3只小鸡肝脏中,GFP基因的PCR检出率为100%,存活的4只鸡中有3只在12月龄的血液样品中,经PCR扩增出了GFP基因;转染孵化72~79h白来航鸡胚PGCs,7批次实验的平均孵化率为21.1%,能在赤道面窗口注射胚的种蛋比率,以73~77h胚龄的最高,为75.0%~92.9%,注射病毒组出壳雏鸡血液DNA中,GFP基因PCR检出率为44.4%。两种方法比较,PGCs方法在实验蛋孵化率、胚定位在赤道面窗口率等方面有较强优势。因此为种蛋内胚细胞的转基因鸡技术研究提供了系统、可操作性强的方法。  相似文献   

2.
鸡胚原始生殖细胞的分离和鸡鸭嵌和体的制备   总被引:2,自引:0,他引:2  
探索了鸡胚12~17期血液中的原始生殖细胞(PGCs)迁移数量变化规律,将其在液氮中冷冻保存.并以Ficoll密度梯度离心、MiniMACS磁气分离、滤膜三种方法对PGCs进行分离,结果发现12~17期血液中均有PGCs存在,13期达到高峰约47.1±10.5个/μl,在血液中比例为0.0126%.冷冻保存3个月后解冻成活率达80%以上.三种分离方法所得的分离效果分别为95.7%、39.2%、63.0%,纯度为27.5%、8.4%、3.1%.将分离的原始生殖细胞以微注射法转移至14~15期麻鸭胚胎中制备了鸡鸭种间嵌和体,获得8只雏鸭(8/110).以鸡W染色体探针原位杂交法在早期鸭胚性腺中检测到鸡原始生殖细胞,嵌和率达84.2%(16/19).表明鸡原始生殖细胞能够迁移定居到鸭胚性腺中,并有可能增殖分化成有功能的配子.  相似文献   

3.
不同时期鸡胚原始生殖细胞分离的研究   总被引:1,自引:1,他引:0  
采用Ficoll密度梯度离心,酶解离两种方法在鸡胚孵化的第14期、19期、28期,分离、培养鸡胚中的原始生殖细胞(PGCs)。探索PGCs分离、培养的适宜时期及方法,以期获得较多数量,较高活力的PGCs作介导生产转基因鸡。结果表明:1.提取、分离PGCs的最佳时期依次为19期、28期。2.两种分离方法均能分离到一定数量的PGCs细胞。但在19期和28期,酶解离法分离到的PGCs的相对数量较多,存活时间较长,是一种较适宜的分离方法。  相似文献   

4.
为获得鸡原始生殖细胞(primordial germ cells,PGCs)的最佳转染效率,本研究比较不同质粒用量和不同细胞数在3种转染试剂(Lipofectamine 2000、3000和LTX&Plus Reagent)中PGCs的转染效率,利用荧光激活细胞分选技术(fluorescence activated cell sorting technology,FACS)辅助优化Lipofectamine 3000转染试剂,经FACS进一步分选获得带绿色荧光蛋白(GFP)的PGCs,继续培养3周后,移植回注到受体鸡胚中,移植3.5 d后分离性腺拍照观察。结果显示,转染试剂Lipofectamine 3000的转染效率最高,质粒、Lipofectamine 3000转染试剂和PGCs细胞数的配比为3μg:4μL:0.5×104个,转染5 h转染效率最高,达到23.4%,与现有的研究结果相比提高了2倍以上。移植回注PGCs到受体鸡胚中,荧光显微镜观察到鸡胚性腺中有GFP阳性细胞。本研究综合考虑转染试剂、质粒用量和细胞数量的影响因素以优化PGCs的转染条件,为高效制备转基因鸡及基因编辑鸡的研究奠定基础。  相似文献   

5.
鸟类的原生殖细胞来自于上胚层胚盘透明区的中央盘处,分离出的PGCs可以被转至受体胚中,可以获得由供体胚PGCs和受体胚PGCs组成的生殖系嵌合体。在这一过程中,如果将外源基因转入供体PGCs,受体胚后代则成为转基因鸟类。利用禽类PGCs作为转基因的载体,来生产嵌合体胚胎和子代为目前研究禽类转基因的一种较为理想的方法。  相似文献   

6.
鸡鸭异种间嵌合体的制备   总被引:6,自引:0,他引:6  
本研究采集孵化14期鸡胚血液中的原始生殖细胞,在液氮中冷冻保存三个月后,解冻成活率达80%以上。以Ficoll密度梯度离心将其从血液中分离纯化,分离获得纯度为27.5%,平均每枚胚胎可获得近50个PGCs。将分离的PGCs 100-200个以微注射法转移至15期早期麻鸭胚胎中制备了鸡鸭种间嵌合体,孵出8(6♂,2♀)只雏鸭,总孵化率为7.3%(8/110)。以鸡W染色体特异性DNA探针原位杂交法在早期鸭胚性腺中检测鸡PGCs。在被检测的21个鸭胚的性腺中,16个有不同程度的阳性信号,嵌合率达76.2%(16/21)。实验结果表明鸡原始生殖细胞能够迁移并定居到鸭胚性腺中,并有可能在鸭性腺中增殖分化成有功能的配子。  相似文献   

7.
鸡胚不同发育时期原始生殖细胞的分离方法   总被引:11,自引:0,他引:11  
采用Ficoll密度梯度离心法和EDTA-胰酶酶解法两种方法,分别提取第14期(孵化53h)血液、第19期(孵化72h)和第28期(孵化132h)生殖腺中的PGCs,以比较两种分离方法对3个发育时期的鸡胚原始生殖细胞在相同体外培养条件下存活时间的差异。结果发现,两种分离方法均能分离到一定数量的原始生殖细胞,但是酶解法分离到的原始生殖细胞的相对数量较Ficoll密度梯度离心法的多,存活时间较长,是一种适宜的分离方法;对鸡胚发育第14、19、28期3个时期提取的原始生殖细胞进行体外培养,存活时间分别为:72h、88h和80h,三者之间差异显著。结果表明:在鸡胚孵化的第19期,因原始生殖细胞大量聚集在肢体后端的生殖嵴原基处,因而较容易收集,体外培养较为适宜,具有较强的可操作性[动物学报49(6):835~842,2003]。  相似文献   

8.
供体细胞在鸡—麻鸭嵌合体胚胎中的发育   总被引:2,自引:0,他引:2  
马玉忠  李赞东  沙金  刘春海  王宁 《遗传学报》2001,28(11):1002-1005
用微注射法将鸡的PGCs注入到麻鸭的胚盘下腔中,用鸡W染色体DNA探针通过原位杂交对供体细胞在嵌合体胚胎中的发育作了研究,54个胚胎各器官都有不同程度的嵌合,其中肝脏的嵌合率最高,性腺最低,胚盘细胞移植可制备鸡-麻鸭的体细胞和种系嵌合体。  相似文献   

9.
小鼠ES细胞种系嵌合体的获得   总被引:14,自引:0,他引:14  
陈伟胜  韩嵘 《遗传学报》1999,26(2):126-134
种系嵌合体的获得是实现ES细胞介导的转基因途径的决定步骤,ES细胞种系分化能力的保持是决定种系嵌合的前提条件,而事体的主种系嵌合体的获得则是判定ES细胞系是否具有种系分化能力的唯一方法,为考察本室新近建立的3种小鼠ES细胞系MESPU21.MESPU22和MESPU29的种系分化能力,选用近交系C57BL/6J及远交系KMW和ICR为受体胚胎提供者,分别通过囊胚注射法和8细胞期桑椹胚注射法进行了嵌  相似文献   

10.
目的为了研究经过基因修饰的体细胞导入到禽类胚胎以后,供体细胞及外源基因是否能在受体胚胎中成活并且外源基因是否可以长期表达。方法筛选得到稳定整合绿色荧光蛋白基因的鸡DT40细胞作为外源蛋白的运载工具,通过血管微注射的方法将其导入到于38.5℃温度条件下孵化65~70 h的鸡胚中,并将操作后的鸡胚在原孵化条件下继续孵化。在孵化的不同时期取移植了DT40细胞的嵌合体胚胎在荧光显微镜下观察荧光细胞的存活与分布情况。并通过PCR以及免疫组织化学方法检测供体细胞在受体中的位置以及绿色荧光蛋白的表达情况。结果荧光标记的DT40细胞可以存活于受体不同的组织器官中,包括:脑、心脏、肝脏等。导入胚胎的整合外源基因的DT40细胞可以存活到胚胎出雏之前,并且外源基因能够正常表达。结论可以通过此方法将外源基因导入到受体中,并使目的蛋白在受体胚胎中持续表达,为胚胎期导入外源蛋白诱导免疫耐受的研究以及将转基因细胞移植到动物体内生产目的蛋白的研究提供科学依据和技术平台。  相似文献   

11.
Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. PGCs therefore have the potential to be of value for gene banking and cryopreservation, particularly via the production of donor gametes with germ-line chimeras. Currently, it is not clear how many PGCs are required for germ-line differentiation and formation of gonadal structures. In the present study, we achieved complete germ-line replacement between two related teleost species, the pearl danio (Danio albolineatus) and the zebrafish (Danio rerio), with transplantation of a single PGC into each host embryo. We isolated and transplanted a single PGC into each blastula-stage, zebrafish embryo. Development of host germ-line cells was prevented by an antisense dead end morpholino oligonucleotide. In many host embryos, the transplanted donor PGC successfully migrated toward the gonadal anlage without undergoing cell division. At the gonadal anlage, the PGC differentiated to form one normally sized gonad rather than the pair of gonads usually present. Offspring were obtained from natural spawning of these chimeras. Analyses of morphology and DNA showed that the offspring were of donor origin. We extended our study to confirm that transplanted single PGCs of goldfish (Carassius auratus) and loach (Misgurnus anguillicaudatus) can similarly differentiate into sperm in zebrafish host embryos. Our results show that xenogenesis is realistic and practical across species, genus, and family barriers and can be achieved by the transplantation of a single PGC from a donor species.  相似文献   

12.
Primordial germ cells (PGCs) are the only cells in developing embryos that can transmit genetic information to the next generation. PGCs therefore have considerable potential value for gene banking and cryopreservation, particularly via production of donor gametes using germ-line chimeras. In some animal species, including teleost fish, the feasibility of using PGC transplantation to obtain donor-derived offspring, within and between species, has been demonstrated. Successful use of PGC transplantation to produce germ-line chimeras is absolutely dependent on the migration of the transplanted cells from the site of transplantation to the host gonadal region. Here, we induced germ-line chimeras between teleost species using two different protocols: blastomere transplantation and single PGC transplantation. We evaluated the methods using the rate of successful migration of transplanted PGCs to the gonadal region of the host embryo. First, we transplanted blastomeres from zebrafish, pearl danio, goldfish, or loach into blastula-stage zebrafish embryos. Some somatic cells, derived from donor blastomeres, were co-transplanted with the PGCs and formed aggregates in the host embryos; a low efficiency of PGC transfer was achieved. Second, a single PGC from the donor species was transplanted into a zebrafish embryo. In all inter-species combinations, the donor PGC migrated toward the gonadal region of the host embryo at a comparatively high rate, regardless of the phylogenetic relationship of the donor and host species. These transplantation experiments showed that the mechanism of PGC migration is highly conserved beyond the family barrier in fish and that transplantation of a single PGC is an efficient method for producing inter-species germ-line chimeras.  相似文献   

13.
Busulfan (1,4-butanediol dimethanesulfonate) was used to deplete endogenous germ cells for the enhanced production of chicken germline chimeras. Utilizing immunohistochemical identification of primordial gem cells (PGCs) in Stage 27 chicken embryos, two delivery formulations were compared relative to the degree of endogenous PGC depletion, a busulfan suspension (BS) and a solublized busulfan emulsion (SBE). Both busulfan treatments resulted in a significant reduction in PGCs when compared to controls. However, the SBE resulted in a more consistent and extensive depletion of PGCs than that observed with the BS treatment. Repopulation of SBE-treated embryos with exogenous PGCs resulted in a threefold increase of PGCs in Stage 27 embryos. Subsequently, germline chimeras were produced by the transfer of male gonadal PGCs from Barred Plymouth Rock embryos into untreated and SBE-treated White Leghorn embryos. Progeny testing of the presumptive chimeras with adult Barred Plymouth Rock chickens was performed to evaluate the efficiency of germline chimera production. The frequency of germline chimerism in SBE-treated recipients increased fivefold when compared to untreated recipients. The number of donor-derived offspring from the germline chimeras also increased eightfold following SBE-treatment of the recipient embryos. These results demonstrated that the administration of a busulfan emulsion into the egg yolk of unincubated eggs improved the depletion of endogenous PGCs in the embryo and enhanced the efficiency of germline chimera production.  相似文献   

14.
Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. In our previous study, a single PGC transplanted into a host differentiated into fertile gametes and produced germ-line chimeras of cyprinid fish, including zebrafish. In this study, we aimed to induce germ-line chimeras by transplanting donor PGCs from various sources (normal embryos at different stages, dissociated blastomeres, embryoids, or embryoids cryopreserved by vitrification) into host blastulae, and compare the migration rates of the PGCs towards the gonadal ridge. Isolated, cultured blastomeres not subject to mesodermal induction were able to differentiate into PGCs that retained their motility. Moreover, these PGCs successfully migrated towards the gonadal ridge of the host and formed viable gametes. Motility depended on developmental stage and culture duration: PGCs obtained at earlier developmental stages and with shorter cultivation periods showed an increased rate of migration to the gonadal ridge. Offspring were obtained from natural spawning between normal females and chimeric males. These results provide the basis for new methods of gene preservation in zebrafish.  相似文献   

15.
Primordial germ cells (PGCs), collected from the blood of 2-day-old chick embryos, were concentrated by Ficoll density centrifugation. The blood contained 0.048% PGCs and the concentrated fraction contained 3.9% PGCs in blood cells. The PGCs were picked up with a fine glass pipette, and one hundred were then injected into the terminal sinuses of 2-day-old Japanese quail embryos (24 somites); bubbles were then inserted to prevent haemorrhage. The embryos were further incubated at 38 degrees C for 24 h, and then fixed. Serial sections were stained with the periodic acid-Schiff reagent (PAS) to demonstrate chicken PGCs and with Feulgen stain to identify quail cells. On the basis of the differences in staining properties, 63.6 +/- 5.3 chick PGCs were detected in the quail embryo in the area where the gonads develop. Furthermore, 39.3 +/- 4.5 chick PGCs were incorporated into the quail germinal epithelium within 24 h of the injection. A similar percentage of the host (quail) PGCs had also migrated to the germinal epithelium at the same stage of development. This technique for obtaining germ-line chimaeras will facilitate research on avian germ-line differentiation.  相似文献   

16.
The present study aimed to investigate the differentiation of chicken (Gallus gallus domesticus) primordial germ cells (PGCs) in duck (Anas domesticus) gonads. Chimeric ducks were produced by transferring chicken PGCs into duck embryos. Transfer of 200 and 400 PGCs resulted in the detection of a total number of 63.0 ± 54.3 and 116.8 ± 47.1 chicken PGCs in the gonads of 7-day-old duck embryos, respectively. The chimeric rate of ducks prior to hatching was 52.9% and 90.9%, respectively. Chicken germ cells were assessed in the gonad of chimeric ducks with chicken-specific DNA probes. Chicken spermatogonia were detected in the seminiferous tubules of duck testis. Chicken oogonia, primitive and primary follicles, and chicken-derived oocytes were also found in the ovaries of chimeric ducks, indicating that chicken PGCs are able to migrate, proliferate, and differentiate in duck ovaries and participate in the progression of duck ovarian folliculogenesis. Chicken DNA was detected using PCR from the semen of chimeric ducks. A total number of 1057 chicken eggs were laid by Barred Rock hens after they were inseminated with chimeric duck semen, of which four chicken offspring hatched and one chicken embryo did not hatch. Female chimeric ducks were inseminated with chicken semen; however, no fertile eggs were obtained. In conclusion, these results demonstrated that chicken PGCs could interact with duck germinal epithelium and complete spermatogenesis and eventually give rise to functional sperm. The PGC-mediated germline chimera technology may provide a novel system for conserving endangered avian species.  相似文献   

17.
Germ-line chimerism was successfully induced by blastoderm transplantation from donor triploid crucian carp, which reproduces gynogenetically, to recipient diploid goldfish, which reproduces bisexually. Lower part of donor blastoderm including primordial germ cells (PGCs) was sandwiched between recipient blastoderm at the mid- to late-blastula stage. When donor grafts were prepared from intact embryos or ventralized ones by removing vegetal yolk hemisphere at the 1- to 2-cell stage, malformations including double axes were observed in the resultant chimeras transplanted with grafts from intact embryos at the hatching stage, while a few malformations in those from ventralized embryos. PGCs originated from donor grafts were observed around the gonadal anlage at 10 days post-fertilization in chimeras. When ploidy of erythrocytes and epidermal cells in chimeric fish was examined by flow-cytometry, no triploid cells were detected at 1- and 5-year-old chimeras. Three-year-old chimeric fish (n=5) laid eggs originated from the donor together with those from the recipient. The frequency of eggs from the donor crucian carp blastoderm varied from 3.1 to 89.3% between chimeras.  相似文献   

18.
The present study was conducted to apply an interspecies germ cell transfer technique to wild bird reproduction. Pheasant (Phasianus colchicus) primordial germ cells (PGCs) retrieved from the gonads of 7-day-old embryos were transferred to the bloodstream of 2.5-day-old chicken (Gallus gallus) embryos. Pheasant-to-chicken germline chimeras hatched from the recipient embryos, and 10 pheasants were derived from testcross reproduction of the male chimeras with female pheasants. Gonadal migration of the transferred PGCs, their involvement in spermatogenesis, and production of chimeric semen were confirmed. The phenotype of pheasant progenies derived from the interspecies transfer was identical to that of wild pheasants. The average efficiency of reproduction estimated from the percentage of pheasants to total progenies was 17.5%. In conclusion, interspecies germ cell transfer into a developing embryo can be used for wild bird reproduction, and this reproductive technology may be applicable in conserving endangered bird species.  相似文献   

19.
鸡囊胚细胞嵌合体制作技术研究及其应用前景   总被引:2,自引:1,他引:1  
家鸡X期囊胚细胞(BCs)嵌合体技术,既是利用转基因技术进行家鸡品种改良和凭借转基因家鸡生物反应器生产医用蛋白等研究领域的关键技术,也是利用BCs冻存家鸡和珍稀鸟类双亲种质资源实现鸟类品种资源多样性保护、利用和挽救珍稀濒危鸟类的重要途径。从家鸡BCs嵌合体制作技术的基本过程:(1) 羽色嵌合体家鸡模型的建立;(2) 囊胚的分离与消化;(3) 受体种蛋的致弱处理;(4) 受体种蛋的开窗(包括部位、方法及封口技术等);(5) 供体细胞导入受体胚(显微注射或简易操作);(6) 孵化(常规方法或换壳培养)等几个方面的研究进展、目前存在的问题以及研究方向等进行了系统阐述。Abstract: The technology of producing chicken chimeras using blastodermal cells is very important not only in the field of transgenic chicken bioreactor but also in searching for efficient ways to conserve avian genetic resource. The basic processes for producing chicken chimeras consist of: (1) Setting up the color model; (2) Separating and dissociating of donor embryos; (3) Compromising of the recipient embryos; (4) Windowing and recovering the recipient eggs; (5) Cells injecting; (6) Method of hatching. The progress, obstacles and prospects of producing chicken chimeras via BCs were discussed in this paper.  相似文献   

20.
Primordial germ cells (PGCs) from stage 27 (5.5-day-old) Korean native ogol chicken embryonic germinal ridges were cultured in vitro for 5 days. As in in vivo culture, these cultured PGCs were expected to have already passed beyond the migration stage. Approximately 200 of these PGCs were transferred into 2.5-day-old white leghorn embryonic blood stream, and then the recipient embryos were incubated until hatching. The rate of hatching was 58.8% in the manipulated eggs. Six out of 60 recipients were identified as germline chimeric chickens by their feather colour. The frequency of germline transmission of donor PGCs was 1.3–3.1% regardless of sex. The stage 27 PGCs will be very useful for collecting large numbers of PGCs, handling of exogenous DNA transfection during culture, and for the production of desired transgenic chickens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号