首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
于拴仓  邹艳敏 《遗传》2008,30(7):926-932
根据I-2的基因序列设计特异扩增引物对I-2/5F和I-2/5R, 扩增I-2基因3 132~3 765 bp之间片段, 基因型为I-2 / I-2的材料03F-7可扩增出633 bp的条带, 而基因型为i-2/ i-2的材料Moneymaker可扩增出693 bp的条带, 杂合型材料可扩增出以上2个条带。通过这两个特异扩增片段的克隆和测序证明, 抗病材料扩增的633 bp片段为I-2基因的3 132~3 765 bp之间的序列, 而感病等位基因中出现大量的碱基突变和60 bp片段插入。利用引物对I-2/5F和I-2/5R, 可区分纯合抗病材料、杂合抗病材料和纯合感病材料, 从而建立了I-2基因的共显性分子标记。在此基础上, 利用该标记对16个主要番茄品种进行基因型鉴定, 8个品种含有I-2基因, 其中1个品种基因型为I-2 / I-2, 其他品种为I-2 / i-2。通过一次PCR和一次HindⅢ酶切建立了I-2和Tm-22双基因检测体系, 为多基因鉴定及标记辅助选择提供了有力工具。  相似文献   

2.
于拴仓  邹艳敏 《遗传》2008,30(7):926-932
根据I-2的基因序列设计特异扩增引物对I-2/5F和I-2/5R, 扩增I-2基因3 132~3 765 bp之间片段, 基因型为I-2 / I-2的材料03F-7可扩增出633 bp的条带, 而基因型为i-2/ i-2的材料Moneymaker可扩增出693 bp的条带, 杂合型材料可扩增出以上2个条带。通过这两个特异扩增片段的克隆和测序证明, 抗病材料扩增的633 bp片段为I-2基因的3 132~3 765 bp之间的序列, 而感病等位基因中出现大量的碱基突变和60 bp片段插入。利用引物对I-2/5F和I-2/5R, 可区分纯合抗病材料、杂合抗病材料和纯合感病材料, 从而建立了I-2基因的共显性分子标记。在此基础上, 利用该标记对16个主要番茄品种进行基因型鉴定, 8个品种含有I-2基因, 其中1个品种基因型为I-2 / I-2, 其他品种为I-2 / i-2。通过一次PCR和一次HindⅢ酶切建立了I-2和Tm-22双基因检测体系, 为多基因鉴定及标记辅助选择提供了有力工具。  相似文献   

3.
根据Ⅰ-2的基因序列设计特异扩增引物对Ⅰ-2/5F和Ⅰ-2/5R,扩增Ⅰ-2基因3 132~3 765 bp之间片段,基因型为Ⅰ-2/Ⅰ-2的材料03F-7可扩增出633 bp的条带.而基因型为I-2/I-2的材料Moneymaker可扩增出693 bp的条带,杂合型材料可扩增出以上2个条带.通过这两个特异扩增片段的克隆和测序证明,抗病材料扩增的633 bp片段为Ⅰ-2基因的3 132~3 765 bp之间的序列,而感病等位基因中出现大量的碱基突变和60 bp片段插入.利用引物对Ⅰ-2/5F和Ⅰ-2/5R,可区分纯合抗病材料、杂合抗病材料和纯合感病材料,从而建立了Ⅰ-2基因的共显性分子标记.在此基础上,利用该标记对16个主要番茄品种进行基因型鉴定,8个品种含有,Ⅰ-2基因,其中1个品种基因型为Ⅰ-2/Ⅰ-2,其他品种为Ⅰ-2/I*2.通过一次PCR和一次HindⅢ酶切建立了Ⅰ-2和Tm-22双基因检测体系,为多基因鉴定及标记辅助选择提供了有力工具.  相似文献   

4.
贾霜凯  严华 《生物技术》2012,22(1):11-13
目的:为了提高目的基因在番茄果实中的表达量,为进一步研究口服植物疫苗打下基础。方法:PCR扩增1.1kb番茄果实特异性启动子E8基因、460bp风疹病毒抗原E1基因、256bp NOS基因,将这些片段插入到pCAMBIA1301多克隆位点,得到植物表达载体pCAM1301E8-E1,经测序鉴定正确,将其转化至根癌农杆菌EHA105,然后进行酶切鉴定。结果:重组质粒酶切鉴定均得到预期片段,测序结果正确。结论:该实验成功构建番茄果实特异性启动子驱动风疹病毒E1基因的植物表达载体。  相似文献   

5.
一种高特异性的改良降落PCR   总被引:3,自引:0,他引:3  
为提高基因组DNA中的基因PCR检出的特异性,设计了一种改良的降落PCR程序,并分别用TaqDNA聚合酶及高保真PfuDNA聚合酶进行实验。自盐藻Dunaliella bardawil中提取基因组DNA作为PCR模板,使用TaqDNA聚合酶及PfuDNA聚合酶,运用普通PCR和降落PCR程序,扩增胡萝眩素生物合成相关基因(cbr)上游启动子序列,并电泳比较PCR扩增产物的特异性。结果显示,使用普通Taq酶PCR,普通PCR程序产生200bp,500bp和1272bp长的三条带,而TD-PCR程序仅克隆出1272bp的特异带;利用高保真的PfuDNA聚合酶作PCR,在TD-PCR泳道中仅有1272bp一条带,而普通PCR除了1272bp的特异带外,还出现一条500bp的非特异带。无论使用普通Taq酶或高保真酶Pfu,改良的降落PCR程序均明显提高PCR的特异性,类似的降落PCR程序可望用于克隆用普通PCR难以克隆的基因片段,或在假阳性难以去除的情况下提高PCR的特异性。  相似文献   

6.
黑芥子酶是一类催化芥子油苷水解的同工酶,pyk10是一个在拟南芥根和下胚轴中特异表达的黑芥子酶基因.从拟南芥Columbia生态型基因组中克隆的长度为1 450 bp的pykl0基因启动子片段,以gus基因为报告基因构建了植物表达载体pPykG.通过农杆菌介导法,将pykl0的根特异表达启动子以及gus基因转入了番茄中蔬6号,经PCR检测,转化植株中扩增出pyk10启动子特异性条带.组织化学法检测及定量分析,显示pyk10启动子驱动gus基因在番茄的根部特定表达.  相似文献   

7.
萝卜是我国的主要蔬菜之一,其杂种优势十分明显,培育自交不亲和系是萝卜杂种优势育种的主要途径之一.本研究根据萝卜自交不亲和基因SLG6序列设计特异引物,以8个自交系为材料,其中自交不亲和系和自交亲和系各4个,扩增SLG6基因第232~711bp之间的单拷贝片段,8个材料均获得了一条480bp的特异片段.用限制性内切酶TaqⅠ对该片段进行酶切,自交不亲和系均产生约125bp和244bp的片段,其中,244bp的片段为自交不亲和系所特有,可作为SLG6基因的CAPS标记用于萝卜自交不亲和基因SLG6的检测;而自交亲和系则具有与自交不亲和系相同的125bp的片段和不同的多态性片段.  相似文献   

8.
目的应用高保真酶(Pfu)和3’末端修饰引物在单管双向等位基因特异性扩增(SB-ASA)中区分SNP基因型,建立高保真酶特异性检测SNP基因型的新方法。方法选取近交系大鼠SNP位点,以RS8149053为例,设计两个外部引物和两个等位基因特异性引物,四引物3’末端进行硫代磷酸化修饰,应用高保真聚合酶(Pfu)进行特异性扩增,扩增结果测序验证其可靠性。结果在RS8149053 SNP位点(C/T)上,等位基因型CC扩增出179 bp目的片段,基因型TT扩增出597 bp目的片段,基因型不同则扩增出分子量不同的片段,目的条带测序结果与Rat Genome Database数据库基因型结果一致,高保真酶扩增结果稳定且特异性强。结论高保真酶等位基因特异性扩增技术能有效降低假阳性率,是一种快速、特异的SNP基因分型新方法。  相似文献   

9.
大麦1H特异性CAPs标记和ASA标记的创制   总被引:1,自引:0,他引:1  
选取大麦1H染色体的STS标记MWG913特异性扩增小麦,把得到的片段进行克隆.用Taq酶切分类并测序,把得到的序列同大麦的序列进行比较.依据比较结果,选取对大麦特异的内切酶,用该酶来酶切大麦、小麦、黑麦、长穗偃麦草、中间偃麦草、簇毛麦的MWG913扩增产物,获得对大麦1H染色体特异的CAPs标记.同时,依据酶切位点碱基的差异设计引物对扩增的产物进行第二次扩增,得到该位点的一对染色体特异性ASA标记.  相似文献   

10.
运用A和G基因鉴定甜瓜的性别类型,为甜瓜其他性状的分子标记辅助育种提供方法。根据已发表的甜瓜CmACS-7(A基因)与WIP1+Gyno-hAT(G基因)基因结构设计PCR引物,对47个重组自交系群体家系及14份甜瓜材料进行检测验证。引物CmACS-7扩增产物在383 bp进行酶切,基因型为AA不能被酶切,扩增产物均被酶切的为基因型aa,酶切位点可分辨共显性基因型;针对WIP1+Gyno-hAT基因结构设计2对引物同时扩增,扩增条带197 bp和184 bp区别G(g)基因基因型。利用自主设计的引物可用于甜瓜苗期筛选雌雄异花同株、全雌系、雄全同株和完全花植株的分子标记辅助选择育种。  相似文献   

11.
The Tm-2 gene and its alleles conferring tomato mosaic virus resistance in tomato originate from Lycopersicon peruvianum, a wild relative of tomato. DNA fragments of several RAPD markers tightly linked with the Tm-2 locus in tomato were successfully cloned and sequenced. Subsequently, the 24-mer oligonucleotide primer pairs of the SCAR markers corresponding to the RAPD markers were designed based on the 5’-endmost sequences. A fragment of the same size as that of a SCAR marker was amplified in the ToMV-susceptible tomato line with no Tm-2, but the digests of the PCR fragments by AccI exhibited polymorphism in fragment length between the two lines. We chose three SCAR markers and three RAPD markers tightly linked with the Tm-2 locus, and examined whether the same-sized fragments corresponding to these markers were also present in three other lines carrying Tm-2a or one of the other Tm-2 alleles. The fragments corresponding to the three SCAR markers were present in all of the three lines, but the other markers (three RAPDs ) were absent in one or two lines, suggesting that the three SCAR markers are closer to Tm-2 than the other markers. Comparison of the nucleotide sequences of these fragments revealed that they are all homologous to the corresponding SCAR markers. Received: 8 November 1999 / Accepted: 15 November 1999  相似文献   

12.
We have cloned and sequenced six RAPD fragments tightly linked to the Tm-1 gene which confers tomato mosaic virus (ToMV) resistance in tomato. The terminal ten bases in each of these clones exactly matched the sequence of the primer for amplifying the corresponding RAPD marker, except for one in which the 5-endmost two nucleotides were different from those of the primer. These RAPD clones did not cross-hybridize with each other, suggesting that they were derived from different loci. From Southern-hybridization experiments, five out of the six RAPD clones were estimated to be derived from middle- or high-repetitive sequences, but not from any parts of the ribosomal RNA genes (rDNA), which are known to be tightly linked with the Tm-1 locus. The remaining clone appeared to be derived from a DNA family consisting of a few copies. These six RAPD fragments were converted to sequence characterized amplified region (SCAR) markers, each of which was detectable using a pair of primers having the same sequence as that at either end of the corresponding RAPD clone. All pairs of SCAR primers amplified distinct single bands whose sizes were the same as those of the RAPD clones. In four cases, the SCAR markers were present in the line with Tm-1 but absent in the line without it, as were the corresponding RAPD markers. In the two other cases, the products of the same size were amplified in both lines. When these SCAR products were digested with different restriction endonucleases which recognize 4-bp sequences, however, polymorphisms in fragment length were found between the two lines. These co-dominant markers are useful for differentiating heterozygotes from both types of homozygote.  相似文献   

13.
番茄抗青枯病基因的AFLP分子标记   总被引:12,自引:0,他引:12  
寿森炎  冯壮志  苗立祥  廖芳滨 《遗传》2006,28(2):195-199
用番茄高抗青枯病品种“T51A”与高感青枯病品种“T9230”配制杂交组合,接种鉴定其正反交F1代及F2代分离群体的青枯病发生情况。结果表明,T51A对青枯病的抗性属于细胞质遗传,受1对杂合基因加性控制。用64个EcoRI/seI引物组合对“T51A”、“T9230”两个亲本及其F2代抗病和感病基因池进行AFLP分析,共扩增出约4200条可分辨的带,其中2条为稳定的差异。用“T51A”和“T9230”杂交产生的F2代分离群体对2个特异条带与目的基因的遗传连锁性进行分析,发现特异条带AAG/CAT与暂定名为RRS-342的抗青枯病基因紧密连锁,二者之间的遗传距离为6.7 cM。将AAG/CAT片段回收、克隆和测序,成功地将其转化为SCAR标记,可以更加方便地用于对番茄青枯病基因的标记辅助选择。   相似文献   

14.
L P Zhang  A Khan  D Ni?o-Liu  M R Foolad 《Génome》2002,45(1):133-146
A molecular linkage map of tomato was constructed based on a BC1 population (N = 145) of a cross between Lycopersicon esculentum Mill. line NC84173 (maternal and recurrent parent) and Lycopersicon hirsutum Humb. and Bonpl. accession PI126445. NC84173 is an advanced breeding line that is resistant to several tomato diseases, not including early blight (EB) and late blight (LB). PI126445 is a self-incompatible accession that is resistant to many tomato diseases, including EB and LB. The map included 142 restriction fragment length polymorphism (RFLP) markers and 29 resistance gene analogs (RGAs). RGA loci were identified by PCR amplification of genomic DNA from the BC1 population, using ten pairs of degenerate oligonucleotide primers designed based on conserved leucine-rich repeat (LRR), nucleotide binding site (NBS), and serine (threonine) protein kinase (PtoKin) domains of known resistance genes (R genes). The PCR-amplified DNAs were separated by denaturing polyacrylamide gel electrophoresis (PAGE), which allowed separation of heterogeneous products and identification and mapping of individual RGA loci. The map spanned 1469 cM of the 12 tomato chromosomes with an average marker distance of 8.6 cM. The RGA loci were mapped to 9 of the 12 tomato chromosomes. Locations of some RGAs coincided with locations of several known tomato R genes or quantitative resistance loci (QRLs), including Cf-1, Cf-4, Cf-9, Cf-ECP2, rx-1, and Cm1.1 (chromosome 1); Tm-1 (chromosome 2); Asc (chrromosme 3); Pto, Fen, and Prf (chromosome 5); 01-1, Mi, Ty-1, Cm6.1, Cf-2, CF-5, Bw-5, and Bw-1 (chromosome 6); I-1, 1-3, and Ph-1 (chromosome 7); Tm-2a and Fr1 (chromosome 9); and Lv (chromosome 12). These co-localizations indicate that the RGA loci were either linked to or part of the known R genes. Furthermore, similar to that for many R gene families, several RGA loci were found in clusters, suggesting their potential evolutionary relationship with R genes. Comparisons of the present map with other molecular linkage maps of tomato, including the high density L. esculentum x Lycopersicon pennellii map, indicated that the lengths of the maps and linear order of RFLP markers were in good agreement, though certain chromosomal regions were less consistent than others in terms of the frequency of recombination. The present map provides a basis for identification and mapping of genes and QTLs for disease resistance and other desirable traits in PI126445 and other L. hirsutum accessions, and will be useful for marker-assisted selection and map-based gene cloning in tomato.  相似文献   

15.
Tm-2 and Tm-2a are genes conferring resistance to tomato mosaic virus in Lycopersicon esculentum. They are allelic and originated from different lines of L. peruvianum, a wild relative of tomato. In this study, random amplified polymorphic DNA (RAPD) markers linked to these genes were screened in nearly isogenic lines (NILs). To detect RAPDs differentiating NILs, 220 different 10-base oligonucleotide primers were examined by the polymerase chain reaction (PCR), and 43 of them generated 53 consistent polymorphic fragments among the NILs. Out of these 53 fragments, 13 were arbitrarily chosen and examined in respect of whether they were linked to the netted virescent (nv) gene, since nv is tightly linked to the Tm-2 locus and its phenotype is more easily distinguishable. As a result, all 13 markers were shown to be linked to nv, and hence to the Tm-2 locus. Among them, two fragments specific to the NIL carrying Tm-2 three specific to the NIL carrying Tm-2a, and four specific to both of these NILs were closely linked to nv.  相似文献   

16.
Four different populations segregating for one of the two closely linked (possibly allelic) tomato disease resistance genes to the fungusCladosporium fulvum,Cf-4 andCf-9, were generated and analysed for recombination frequencies between theCf-genes and restriction fragment length polymorphism (RFLP) loci. The population consisting of F2 progeny from the interspecific crossLycopersicon esculentum carryingCf-9 ×L. pennellii was identified as the most useful for RFLP mapping of theCf-4/9 locus and an RFLP map around this locus was constructed mainly using this population. The two closest markers identified were CP46, 2.6 cM distal, and a group of 11 markers including TG236, 3.7 cM proximal toCf-4/9. A polymerase chain reaction (PCR)-based procedure for the rapid identification of recombination events between these two markers was developed. The regions of foreign DNA introgression surroundingCf-4 andCf-9 in near-isogenic lines were delimited.  相似文献   

17.
Summary We studied rDNA restriction fragment length polymorphism between two tomato lines used for F1 hybrid seed production: line A, containing the Tm-1 gene responsible for tobacco mosaic virus tolerance introgressed from the wild species Lycopersicon hirsutum, and line B, a tobacco mosaic virus sensitive line. Hybridization patterns led to distinct rDNA maps with two size classes, 10.4 and 10.7 kb, in line A and a single, 8.9-kb class in line B. Size differences were located in the intergenie sequence (IGS). A highly specific 54-bp TaqI fragment was cloned from the line A IGS and used in dot blot experiments to probe total DNA from line A, line B, and their F1 hybrid. It proved capable of discriminating B from A and the hybrid. This probe could thus serve to screen inbreds in commercial seed lots where line A is used as male. This fragment showed 80–90% sequence homology with the 53-bp subrepeats previously characterized in a region of the tomato IGS close to the 25S rRNA gene. Preliminary comparison of rDNA in line A and several wild related species indicated that the L. hirsutum H2 genotype was the closest to line A. rDNA variations between line A and this wild genotype could be explained by recombination during the introgression process involving numerous backcrosses or by an important intraspecific polymorphism. Our results strongly suggest that Tm-1 and the rDNA were introgressed together into tomato from L. hirsutum through linkage drag.  相似文献   

18.
Tomato leaf mould-resistance gene Cf) was amplified by PCR and cloned from the genomic DNA of a tomato ( Lycopersicon esculentum Mill. ) cultivar ("Zhongza 9'). Sequence analysis indicates that this Cf9 gene is 2 751 bp long and contains an open reading frame encoding a protein of 863 amino acids. An intron of 115 bp in length is found in the 3' untranslated region of this gene. The exon/intron borders are replicate sequences, TCCAGG(T)ATTC, which shares high homology with those of the two genes of Cf2 which is another leaf mould-resistant gene locus in tomato. Compared with the previously reported cDNA sequence of Cf9, a single change of T to C occurs at the nucleotide position of 371 in this PCR-ampliiied Cf) gene, which converts Leu 121 to Pro in the LRR region of the encoded protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号