首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pilot-scale test was conducted in a submerged membrane bioreactor (SMBR) for 452 days to treat high-strength traditional Chinese medicine wastewater from two-phase anaerobic digest effluent. This study focuses on the effects of operational parameters on effluent quality of a SMBR. The parameters include shorter hydraulic retention time (HRT), higher influent COD concentration, higher COD loading rate and mixed liquor suspended solids (MLSS). The experimental results demonstrated that when HRT was 5 h and the influent COD was less than 3000 mg L−1, the effluent quality of the SMBR evaluated from its COD content (CODfilt) could meet the accepted Chinese standards for water reclamation; when HRT was 3.2 h and the influent COD was less than 3000 mg L −1, or HRT was 5 h and the influent COD fluctuated between 3000 and 6000 mg L−1, the effluent quality of the SMBR could meet the normal Chinese discharged standard. Statistical analyses showed that CODfilt correlated positively with the COD loading rate. It correlated negatively with the MLSS for MLSS values between 7543 and 13 694 mg L−1. When MLSS was >13 694 mg L−1 it correlated positively with CODfilt. Based on experimental values from SMBR and on values predicted by a simulation model generated using the back propagation neural network (BPNN) theory, the optimum operational parameters for the treatment of a high-strength TCM wastewater were as follows: HRT was 5 h, SRT was 100 day, COD loading rate was<20.5 kg m−3 d−1, the range of MLSS was 7543–13 694 mg L−1.  相似文献   

2.
In this paper, three identical membrane bioreactors (MBRs) were operated in parallel in order to specify the influence mechanism of hydraulic retention time (HRT) on MBR. The results showed that the removal efficiency of chemical oxygen demand (COD) was stable though it decreased slightly as HRT decreased, but biomass activity and dissolved oxygen (DO) concentration in sludge suspension decreased as HRT decreased. The filamentous bacteria grew easily with decreasing HRT. The extracellular polymeric substances (EPS) concentration and sludge viscosity increased significantly as filamentous bacteria excessively grew. The over growth of filamentous bacteria, the increase of EPS and the decrease of shear stress led to the formation of large and irregular flocs. Furthermore, the mixed liquid suspended solids (MLSS) concentration and sludge viscosity increased significantly as HRT decreased. The results also indicated that sludge viscosity was the predominant factor that affecting hydrodynamic conditions of MBR systems.  相似文献   

3.
Lee JK  Choi CK  Lee KH  Yim SB 《Bioresource technology》2008,99(16):7788-7796
This study investigated characteristics of a sequencing batch reactor (SBR) system which was varied with respect to sludge retention time (SRT) (5.9, 8.2, 10.5, 12.2, and 16.2 days). The removal efficiencies of chemical oxygen demand (COD) were more than 90% under all SRT conditions, and the greatest efficiency (92.2%) occurred with a SRT of 16.2 days. As the SRT increased, the denitrification rate per mixed liquor suspended solids (MLSS) during the anoxic(I) period decreased significantly from 166.3 mg NO(X)(-)-N/g MLSS d to 68.8 mg NO(X)(-)-N/g MLSS d. As the SRT increased, the phosphorus removal efficiency decreased from 47.1% (SRT of 5.9 days) to 31.0% for a SRT of 16.2 days, because active phosphate release and uptake occurred under shorter SRT conditions. The mass balance of nitrogen (with respect to nitrogen in the influent) at a SRT of 16.2 days (the highest nitrogen removal efficiency) showed 14.9% of nitrogen was removed in clarified water effluent, 49.7% was removed by the sludge waste process and 33.3% was removed by denitrification. Nitrogen processing was well accounted for in the SBR system as the nitrogen mass balance was close to 100% (97.9%).  相似文献   

4.
This experiment aimed to decolorize Reactive Red 159 using a high potential of a consortium of purple nonsulfur bacteria (PNSB) with an application of response surface methodology through a central composite design in open system. The three factors of hydraulic retention time (HRT), sludge retention time (SRT) and dye concentration were applied to the design. The decolorization was operated in an anaerobic sequencing batch reactor until the system reached to a pseudosteady state for 30?cycles in each experiment. The optimal condition was 6,500?mg/L of Reactive Red 159 concentration with 20 days of SRT and 8 days of HRT, achieving dye effluent of 142.62?±?5.35?mg/L, decolorization rate of 264.54?±?7.13?mg/L/h and decolorization efficiency of 97.68?±?0.74%. The results revealed that PNSB efficiently decolorized the high concentration of Reactive Red 159 and they were a high potential of microorganisms for dyes contaminated wastewater treatment.  相似文献   

5.
Treatment of wet corn-milling wastewater with filamentous fungi was investigated as a means of obtaining fungal biomass as an additional byproduct. Competitive bacterial growth is a common problem during this nonaseptic treatment process. Selective disinfection with ozone was evaluated for eliminating bacterial populations during fungal cultivation. Three laboratory-scale continuous flow aerated reactors were operated under nonaseptic conditions at 38 degrees C, hydraulic retention time of 8h and pH of 4. The bacterial population was reduced by one log with respect to the control when ozone was dosed at a concentration above 47+/-2mg/L. An ozone dosage of about 57mg/L was found to be most effective in improving both fungal biomass production and soluble chemical oxygen demand (SCOD) removal (up to 90%). Fungal biomass concentration increased from c. 1.45g/L (control) to c. 1.75g/L at a 57-mg/L ozone dosage. Higher and lower dosages of ozone resulted in poorer fungal growth and lower SCOD removal.  相似文献   

6.
The effects of different hydraulic retention time (HRT) on (RS)-MCPP utilisation was investigated by decreasing the feed flow rate in an anaerobic membrane bioreactor (AnMBR). Results showed an average COD removal efficiency of 91.4%, 96.9% and 94.4% when the reactor was operated at HRT 3, 7 and 17 d, respectively. However, when the HRT was reduced to 1d, the COD removal efficiency declined to just only 60%, confirming the AnMBR is stable to a large transient hydraulic shock loads. The (RS)-MCPP removal efficiency fluctuated from 6% to 39% at HRT 3 d, however when it was increased to 7 and 17 d, the removal efficiency increased to an average of 60% and 74.5%. In addition, (RS)-MCPP specific utilisation rates (SUR) were dependent on the HRT and gradually improved from 18 to 43 μg mg VSS(-1) d(-1) as flow rate increased.  相似文献   

7.
Huang M  Li Y  Gu G 《Bioresource technology》2008,99(17):8107-8111
A laboratory-scale anaerobic-anoxic-aerobic (AAA) activated sludge wastewater treatment system was employed to investigate the effects of hydraulic retention time (HRT) and sludge retention time (SRT) on the removal and fate of di-(2-ethylhexyl) phthalate (DEHP). In the range from 5 to 14h, HRT had no significant effect on DEHP removal. However, longer HRT increased DEHP accumulation in the system and DEHP retention in the waste sludge. When SRT was increased from 15 to 25d, DEHP removal efficiency stayed above 96%. Compared to the removal of only 88% at SRT of 10d, longer SRT enhanced DEHP degradation efficiency. The optimal HRT and SRT for both nutrients (nitrogen and phosphorus) and DEHP removal were 8h and 15d. At these retention times, about 71% of DEHP was degraded by the activated sludge process, 26% was accumulated in the system, 2% was released in the effluent, and 1% remained in the waste sludge. The anaerobic, anoxic and aerobic reactors were responsible for 15%, 19% and 62% of the overall DEHP removal, respectively.  相似文献   

8.
Adaptive response of microbial communities to soluble microbial products   总被引:1,自引:0,他引:1  
We carried out two experiments to study the influence of soluble microbial products (SMP) on biomass concentration [defined as mixed liquor suspended solids (MLSS)] and removal of soluble biological and chemical oxygen demands (sBOD5 and sCOD): (1) SMP were allowed to accumulate, and (2) SMP content was artificially reduced by washing the biomass. The daily initial sCOD in both experiments was kept constant at 859±6 mg/l for 16 days. In experiment 1, the highest sCOD removal (80%) occurred during the first day. Thereafter, it decreased successively to 40% [sludge retention time (SRT), 12 days], after which it increased steadily to 50±4%. Variations in residual sCOD were accompanied by variations in sBOD5, showing that the biodegradability of the accumulated SMP components was changing. MLSS fluctuated within the range 1,200±25–1,993±58 mg/l. We attributed the irregular accumulation of the biomass to variations in the biodegradability of SMP components. The initial sBOD5/MLSS ratio varied according to variations in initial sBOD5 and MLSS, whereas the residual ratio was constant at 0.025±0.008. This indicated a direct relationship between the concentrations of biomass and SMP produced. In experiment 2, MLSS increased from 1,200±25 to a constant value (2,810±16 mg/l; SRT, 12 days). After this time, no decrease or increase in MLSS was observed. Correspondingly, sCOD and sBOD5 removal increased from 80–97 to 84–99%. A stable microbial community that could consume organic matter efficiently was developed under these conditions.  相似文献   

9.
Summary A 400 L pilot-scale inverse fluidized-bed biofilm reactor(IFBBR) was used to treat synthetic wastewater. The removal efficiency of the soluble chemical oxygen demand(SCOD) was more than 90% at a hydraulic retention time(HRT) of 5 h. The IFBBR could be operated successfully for 5 months without any significant problems.  相似文献   

10.
Performances of single-stage and two-stage sequencing batch reactor (SBR) systems were investigated for treating dairy wastewater. A single-stage SBR system was tested with 10,000 mg/l chemical oxygen demand (COD) influent at three hydraulic retention times (HRTs) of 1, 2, and 3 days and 20,000 mg/l COD influent at four HRTs of 1, 2, 3, and 4 days. A 1-day HRT was found sufficient for treating 10,000-mg/l COD wastewater, with the removal efficiency of 80.2% COD, 63.4% total solids, 66.2% volatile solids, 75% total Kjeldahl nitrogen, and 38.3% total nitrogen from the liquid effluent. Two-day HRT was believed sufficient for treating 20,000-mg/l COD dairy wastewater if complete ammonia oxidation is not desired. However, 4-day HRT needs to be used for achieving complete ammonia oxidation. A two-stage system consisting of an SBR and a complete-mix biofilm reactor was capable of achieving complete ammonia oxidation and comparable carbon, solids, and nitrogen removal while using at least 1/3 less HRT as compared to the single SBR system.  相似文献   

11.
Treatment of textile wastewater is a big challenge because of diverse chemical composition, high chemical strength and color of the wastewater. In the present study, treatment of wastewater containing reactive black-5 azo dye was studied in anaerobic sequencing batch bioreactor (SBBR) using mixed liquor suspended solids (MLSS) from suspended and attach growth bioreactors. MLSS at concentration of 1000 mg/L and reactive black-5 azo dye at 100 mg/L were used. A culture (108–109 CFU/ml) of pre-isolated bacterial strains (Psychrobacter alimentarius KS23 and Staphylococcus equorum KS26)) capable of degrading azo dyes in mineral salt medium was used to accelerate the treatment process in bioreactor. Different combinations of sludge, culture and dye were used for treatment using different co-substrates. About 85% COD removal was achieved by consortium (MLSS + KS23 + KS26) after 24 h in attach growth bioreactor. Similarly, 92% color removal was observed with consortium in attach growth bioreactor compared to 85% color removal in suspended bioreactor. Addition of bacterial culture (20%, v/v) to the bioreactor could enhance the rate of color removal. This study suggests that biotreatment of wastewater containing textile dyes can be achieved more efficiently in the attach growth bioreactor using yeast extract as a co-substrate and MLSS augmented with dye-degrading bacterial strains.  相似文献   

12.
Yang SS  Guo WQ  Zhou XJ  Meng ZH  Liu B  Ren NQ 《Bioresource technology》2011,102(21):9843-9851
Batch tests were employed to estimate the optimal conditions for excess sludge reduction under an alternating aerobic/oxygen-limited environment using response surface methodology. Three key operating parameters, initial mixed liquor suspended solids (initial MLSS), HRT (hydraulic retention time) and reaction temperature (T), were selected, and their interrelationships studied by the Box–Behnken design. The experimental data and ANOVA analysis showed that the coefficient of determination (R2) was 0.9956 and the adjR2 was 0.9912, which demonstrates that the modified model was significant. The optimum conditions were predicted to give a maximal ΔMLSS yield of 226 mg/L at an initial MLSS of 10,021 ± 50 mg/L, an HRT of 9.1 h and a reaction temperature of 29 °C. The prediction was tested by triplicate experiments, where a ΔMLSS yield of 233 mg/L was achieved under the chosen optimal conditions. This excellent correlation between the predicted and measured values provides confidence in the model.  相似文献   

13.
Non-woven fabric filter- (NWFF) and microfilter-MBR modules were made using 100?μm polypropylene and 0.25?μm polyethylene materials, respectively. The performances and mechanisms of the two processes were investigated, including additional batch filtration tests to find the function of the dynamic gel layer on the membrane surface. The HRT of both MBRs was 9?h and the operating permeate flux was 13?L/m(2)/h. The two MBRs consisted of an anoxic and aerobic reactor. The NWFF or microfilter (MF) was submerged in each of the aerobic reactors. The two MBRs showed similar performances for the removal of organic matters, suspended solids and nitrogen. Cake formation on the NWFF contributed to major resistance, while the gel layer on the microfilter or internal fouling of the pores played a key role in the fouling of the membrane surface. The amount of soluble extracellular polymer substances (EPS) (13?mg/L) of the attached sludge on the NWFF surface was larger than that (11?mg/L) of that suspended sludge. Consequently, the functional gel layer for the coarse and microfilter is established based on the relationship among the EPS, transmembrane pressure and MLSS.  相似文献   

14.
The supernatant from mesophilic anaerobic digestion of piggery wastewater is characterised by a high amount of COD (4.1 g COD L(-1)), ammonium (2.3g NH(4)(+)-NL(-1)) and suspended solids (2.5 g SS L(-1)). This effluent can be efficiently treated by means of a Sequencing Batch Reactor (SBR) strategy for biological COD, SS and nitrogen removal including a Coagulation/Flocculation step. Total COD and SS reduction yields higher than 66% and 74%, respectively, and a total nitrogen removal (via nitrite) of more than 98% were reached when working with HRT 2.7 days, SRT 12 days, temperature 32 degrees C, three aerobic/anoxic periods, without external control of pH and under limited aeration flow. The inhibition of nitrite oxidizing biomass was achieved by the working free ammonia concentration and the restricted air supply (dissolved oxygen concentration below 1 mg O(2)L(-1)). Since a part of the total COD was colloidal and/or refractory, a Coagulation/Flocculation step was implemented inside the SBR operating strategy to meet a suitable effluent quality to be discharged. Several Jar-Tests demonstrated that the optimal concentration of FeCl(3) was 800 mg L(-1). A respirometric assay showed that this coagulant dosage did not affect the biological activity of nitrifying/denitrifying biomass.  相似文献   

15.
Li J  Wang J  Luan Z  Deng Y  Chen L 《Bioresource technology》2011,102(10):5709-5716
A two-stage UASB reactor was employed to pretreat acrylic fiber manufacturing wastewater. Mesophilic operation (35 ± 0.5 °C) was performed with hydraulic retention time (HRT) varied between 28 and 40 h. Mixed liquor suspended solids (MLSS) in the reactor was maintained about 8000 mg/L. The results showed COD and sulfate removal could be kept at 51% and 75%, respectively, when the HRT was no less than 38 h. Sulfate reduction mainly occurred in the acidification-stage reactor while methane production mainly occurred in the methane-stage reactor. The size of granule formed in the acidification-stage reactor ranged between 1 and 5 mm while the largest size of granule in the methane-stage reactor ranged from 0.5 to 2 mm. Compared to microbial populations in the acidification-stage reactor, the microbial diversity in methane-stage reactor was more abundant. In the acidification-stage reactor, the Syntrophobacter sulfatireducens devoted to both sulfate reduction and acetate production.  相似文献   

16.
Wu S  Yue Q  Qi Y  Gao B  Han S  Yue M 《Bioresource technology》2011,102(3):2296-2300
Novel media-ultra-lightweight sludge ceramics (ULSC) employed in an upflow lab-scale biological aerobic filter (BAF) were investigated for pharmaceutical advanced wastewater treatment. The influences of the volume ratio of pharmaceutical wastewater to domestic wastewater (PW/DW), hydraulic retention time (HRT) and air-liquid ratio (A/L) on chemical oxygen demand (CODCr) and ammonium (NH(4)(+)-N) of the effluent were investigated. When PW/DW of 4:1, HRT of 6 h, and A/L of 5:1 were applied, the mean effluent concentration of NH(4)(+)-N was 6.2 mg L(-1), and the maximum CODCr concentration in the effluent was 96 mg L(-1). Both NH(4)(+)-N and CODCr did not exceed the limits of the national discharge standards (NH(4)(+)-N ≤ 15 mg L(-1), CODCr ≤ 100 mg L(-1)). In addition, the BAF system showed a strong capacity of further removal from NH(4)(+)-N of the effluent.  相似文献   

17.
Removal of chlorophenols in sequential anaerobic-aerobic reactors   总被引:5,自引:0,他引:5  
Combination of upflow anaerobic sludge blanket (UASB) and aerobic rotating biological contactor (RBC) reactors having higher biomass concentration and higher sludge retention time (SRT) was applied for the sequential treatment of priority pollutant chlorophenol containing wastewater. Target compounds 2-chlorophenol (2-CP) and 2,4-dichlorophenol (2,4-DCP) present in two simulated wastewaters at a concentration of 30 mg/l each individually were sequentially treated in continuous mode by combined UASB-I, RBC-I and combined UASB-II, RBC-II reactors, respectively after the acclimation of their biomass with the corresponding chlorophenol. Reactor combinations took 190 and 215 days for acclimation with 30 mg/l of 2-CP and 2,4-DCP respectively. Hydraulic retention time (HRT) studies showed that 12h HRT of UASB-I and 23 h HRT of RBC-I as well as 12h HRT of UASB-II and 28.8h HRT of RBC-II were the optimum combinations for the treatment of simulated wastewater containing 2-CP and 2,4-DCP respectively. Optimum HRT combinations produced 2-CP and 2,4-DCP effluent having corresponding chlorophenol concentration of below detectable limit (BDL) and 0.1 mg/l respectively. Half velocity coefficients (Ks) for 2-CP and 2,4-DCP biodegradation in UASB reactors were determined to be 5.07 mg 2-CP/l and 6.49 mg 2,4-DCP/l. Optimum ratio of substrate (chlorophenol): co-substrate (sodium acetate) was 1:100.  相似文献   

18.
Incomplete denitrification and ammonia accumulation were found to cause proliferation of filamentous microorganisms in sequencing batch reactors (SBRs) for swine wastewater treatment. Foaming was observed in response to the accumulation of 115.2 and 12.2 mg/L of nitrate and ammonia, respectively. The mixed liquor suspended solids (MLSS) level in SBRs was decreased to 2,000 mg/L and the suspended solids in the effluent reached 200 mg/L when foaming appeared. However, the use of swine waste as an external carbon source for enhanced biological nitrogen removal was found to effectively control the foaming caused by filamentous microorganisms. Therefore, an optimum strategy for the addition of swine waste was designed using integrated real-time control to provide pulse input control of slurry based on the “nitrate knee” in the oxidation–reduction potential profile. In this case, the MLSS concentration was maintained at an average value of approximately 7,550 mg/L, while the SS in the effluent was less than 30 mg/L.  相似文献   

19.
实验室模拟高负荷SPAC厌氧反应器运行   总被引:6,自引:1,他引:5  
采用模拟废水, 对新型高负荷螺旋式自循环(Spiral automatic circulation, SPAC)厌氧反应器的运行性能进行了实验室模拟研究。结果表明: 在30oC, 水力停留时间(HRT)为12 h, 进水COD浓度从8000 mg/L升至20 000 mg/L的条件下, 反应器的COD去除率为91.1%~95.7%, 平均去除率为93.6%。在进水浓度为20 000 mg/L, HRT由5.95 h缩短至1.57 h的工况下, COD去除率从96.0%降低至78.7%, 反应器达到最高容积负荷率306 g COD/(L·d), 最大容积COD去除率240 g/(L·d), 最高容积产气率131 L/(L·d)。该反应器对基质浓度的连续提升具有良好的适应能力。进水COD浓度由8000 mg/L提升至20 000 mg/L时, 出水COD浓度一直处在较低水平(平均为852?mg/L), 容积COD去除率和容积产气率分别提高162%和119%。该反应器对HRT的连续缩短也有良好的适应能力。HRT由5.95 h缩短至1.57 h时,反应器容积COD去除率和容积产气率分别升高191%和195%。  相似文献   

20.
Biological hydrogen production using a membrane bioreactor   总被引:6,自引:0,他引:6  
A cross-flow membrane was coupled to a chemostat to create an anaerobic membrane bioreactor (MBR) for biological hydrogen production. The reactor was fed glucose (10,000 mg/L) and inoculated with a soil inoculum heat-treated to kill non-spore-forming methanogens. Hydrogen gas was consistently produced at a concentration of 57-60% in the headspace under all conditions. When operated in chemostat mode (no flow through the membrane) at a hydraulic retention time (HRT) of 3.3 h, 90% of the glucose was removed, producing 2200 mg/L of cells and 500 mL/h of biogas. When operated in MBR mode, the solids retention time (SRT) was increased to SRT = 12 h producing a solids concentration in the reactor of 5800 mg/L. This SRT increased the overall glucose utilization (98%), the biogas production rate (640 mL/h), and the conversion efficiency of glucose-to-hydrogen from 22% (no MBR) to 25% (based on a maximum of 4 mol-H(2)/mol-glucose). When the SRT was increased from 5 h to 48 h, glucose utilization (99%) and biomass concentrations (8,800 +/- 600 mg/L) both increased. However, the biogas production decreased (310 +/- 40 mL/h) and the glucose-to-hydrogen conversion efficiency decreased from 37 +/- 4% to 18 +/- 3%. Sustained permeate flows through the membrane were in the range of 57 to 60 L/m(2) h for three different membrane pore sizes (0.3, 0.5, and 0.8 microm). Most (93.7% to 99.3%) of the membrane resistance was due to internal fouling and the reversible cake resistance, and not the membrane itself. Regular backpulsing was essential for maintaining permeate flux through the membrane. Analysis of DNA sequences using ribosomal intergenic spacer analysis indicated bacteria were most closely related to members of Clostridiaceae and Flexibacteraceae, including Clostridium acidisoli CAC237756 (97%), Linmingia china AF481148 (97%), and Cytophaga sp. MDA2507 AF238333 (99%). No PCR amplification of 16s rRNA genes was obtained when archaea-specific primers were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号