首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.  相似文献   

2.
Lee JK  Choi CK  Lee KH  Yim SB 《Bioresource technology》2008,99(16):7788-7796
This study investigated characteristics of a sequencing batch reactor (SBR) system which was varied with respect to sludge retention time (SRT) (5.9, 8.2, 10.5, 12.2, and 16.2 days). The removal efficiencies of chemical oxygen demand (COD) were more than 90% under all SRT conditions, and the greatest efficiency (92.2%) occurred with a SRT of 16.2 days. As the SRT increased, the denitrification rate per mixed liquor suspended solids (MLSS) during the anoxic(I) period decreased significantly from 166.3 mg NO(X)(-)-N/g MLSS d to 68.8 mg NO(X)(-)-N/g MLSS d. As the SRT increased, the phosphorus removal efficiency decreased from 47.1% (SRT of 5.9 days) to 31.0% for a SRT of 16.2 days, because active phosphate release and uptake occurred under shorter SRT conditions. The mass balance of nitrogen (with respect to nitrogen in the influent) at a SRT of 16.2 days (the highest nitrogen removal efficiency) showed 14.9% of nitrogen was removed in clarified water effluent, 49.7% was removed by the sludge waste process and 33.3% was removed by denitrification. Nitrogen processing was well accounted for in the SBR system as the nitrogen mass balance was close to 100% (97.9%).  相似文献   

3.
A laboratory investigation has been undertaken to asses the effects of two operating parameters, mean cell residence time (MCRT) and anoxic hydraulic retention time (HRT), on the performance of an anoxic/oxic activated sludge system. The performance of the system was evaluated in terms of its COD, nitrogen, and biomass characteristics. An activated sludge system is capable of producing a better effluent, in terms of COD and nitrogen characteristics, when it is operated in an anoxic/oxic fashion. A longer MCRT and an adequate anoxic HRT are desirable in the operation of an anoxic/oxic activated sludge system. For the wastewater used in this investigation, the anoxic/oxic unit was capable of producing an effluent with the following characteristics when it was operated at MCRT = 20 days, total system HRT = 10 h, and anoxic HRT = 3-5 h: COD = 15 mg/L; VSS = 10 mg/L; TKN = 1.30 mg/L; NH(3) - N = 0.60 mg/L; and NO(2) + NO(3) - N = 5.0 mg/L. A uniform distribution of biomass is achievable in an anoxic/oxic activated sludge system because of the intensive recirculation/convection maintained. The provision of an anoxic zone in the aeration tank promotes a rapid adsorption of feed COD into the biomass without an immediate utilization for cell synthesis. This, in turn, results in a high microbial activity and a lower observed biomass yield in the system. A tertiary treatment efficiency is achievable in an anoxic/oxic activated sludge system with only secondary treatment operations and costs. A conventional activated sludge system can be easily upgraded by converting to the anoxic/oxic operation with minor process modifications.  相似文献   

4.
Tsai YP  Chen HT 《Bioresource technology》2011,102(23):11043-11047
This study explored the influence of sludge retention time (SRT) on tolerance of copper invasion for polyphosphate accumulating organisms (PAOs) in an enhanced biological phosphorus removal (EBPR). The experimental data showed the anaerobic polyhydroxyalkanoates (PHA) storage for the sludge at 10d SRT was less influenced by copper invasion than those at 5d and 15d SRTs. The reaction of PAOs aerobically taking up phosphate for the sludge at 5d or 15d SRT almost ceased at 2 mg Cu L−1, whereas PAOs in the sludge at 10d SRT retained half of the ability to take up phosphate. Both the PHAs degradation and synthesis rates decreased with increasing copper concentration, regardless of the SRTs. However, the copper inhibition of the former was greater than that of the later.  相似文献   

5.
Anaerobic acidogenesis of primary sludge: the role of solids retention time   总被引:2,自引:0,他引:2  
This research investigates the effect of solids retention time (SRT) on the acid-phase anaerobic digestion of primary sludge. A series of experiments were conducted using two continuous-flow 3-L units with the following configuration: a completely mixed reactor (CMR) with clarifier and solids recycle and an upflow anaerobic sludge blanket (UASB) reactor. Results show that C(2) to C(5) volatile fatty acids (VFA) were the predominant compounds formed. At a constant hydraulic retention time (HRT) of 12 h, variation in SRT from 10 to 20 days resulted in a slight increase in VFA production in both systems, but at a shorter SRT (5 days) a drastic drop in acid production was observed. In addition, the percent distribution of VFA was to some extent affected by the change in SRT. On the other hand, organic matter degradation [measured by the chemical oxygen demand (COD) specific solubilization rate or the percent volatile suspended solids (VSS) reduction] appeared to be independent of SRT, at least in the range investigated. The percent soluble COD in the form of VFA, however, increased steadily with increasing SRT, approaching the 90% level at 20 days. The remaining soluble COD in the effluent from these systems may be mainly attributed to metabolic intermediates and unused soluble substrate. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
The present study investigates the biodegradation of pharmaceutically active compounds (PhACs) by active biomass in activated sludge. Active heterotrophs (Xbh) which are known to govern COD removal are suggested as a determining factor for biological PhAC removal as well. Biodegradation kinetics of five polar PhACs were determined in activated sludge of two wastewater treatment plants which differed in size, layout and sludge retention time (SRT).Results showed that active fractions of the total suspended solids (TSS) differed significantly between the two sludges, indicating that TSS does not reveal information about heterotrophic activity. Furthermore, PhAC removal was significantly faster in the presence of high numbers of heterotrophs and a low SRT. Pseudo first-order kinetics were modified to include Xbh and used to describe decreasing PhAC elimination with increasing SRT.  相似文献   

7.
Biological treatment of synthetic wastewater containing Cu(II) ions was realized in an activated sludge unit with pre-adsorption of Cu(II) onto powdered waste sludge (PWS). Box-Behnken experimental design method was used to investigate Cu(II), chemical oxygen demand (COD) and toxicity removal performance of the activated sludge unit under different operating conditions. The independent variables were the solids retention time (SRT, 5–30 d), hydraulic residence time (HRT, 5–25 h), feed Cu(II) concentration (0–50 mg L?1) and PWS loading rate (0–4 g h?1) while percent Cu(II), COD, toxicity (TOX) removals and the sludge volume index (SVI) were the objective functions. The data were correlated with a quadratic response function (R2 = 0.99). Cu(II), COD and toxicity removals increased with increasing PWS loading rate and SRT while decreasing with the increasing feed Cu(II) concentration and HRT. Optimum conditions resulting in maximum Cu(II), COD, toxicity removals and SVI values were found to be SRT of 30 d, HRT 15 h, PWS loading rate 3 g h?1 and feed Cu(II) concentration of less than 30 mg L?1.  相似文献   

8.
This study compared the PHAs production behavior of sludges from the anaerobic and oxic phases of an enhanced biological phosphorus removal (EBPR) system. This was accomplished by using the kinetics and stoichiometric coefficients obtained from aerobic batch tests to evaluate the performance of these two sludges. Experimental results indicated that the metabolic behavior of the sludges for PHAs production depend significantly on the operating sludge retention time (SRT) of the EBPR system. The oxic sludge with 5 days of SRT exhibited better PHAs production performance than anaerobic sludge. Conversely, the anaerobic sludge with 15 days of SRT had superior PHAs production capability compared to oxic sludge. These comparisons suggest that whether anaerobic or oxic sludge should be employed for PHAs production depends mainly on the operating SRT of the EBPR system.  相似文献   

9.
The interacting effects of Focused Pulsed (FP) treatment and solids retention time (SRT) were evaluated in laboratory-scale digesters operated at SRTs of 2-20 days. Anaerobic digestion and methanogenesis of waste activated sludge (WAS) were stable for SRT ? 5 days, but the effluent soluble organic compounds increased significantly for SRT = 2 days due to a combination of faster hydrolysis kinetics and washout of methanogens. FP treatment increased the CH4 production rate and TCOD removal efficiency by up to 33% and 18%, respectively, at a SRT of 20 days. These effects were the result of an increase in the hydrolysis rate, since the concentrations of soluble components remained low for SRT ? 5 days. Alternately, FP pre-treatment of WAS allowed the same conversion of TCOD to CH4 with a smaller SRT and digester size: e.g., 40% size savings with a CH4 conversion of 0.23 g CH4-COD/g CODin.  相似文献   

10.
The methodology for determination of the minimally required aerobic sludge retention time (SRTminaer) in biological phosphorus removal (BPR) systems is presented in this article. Contrary to normal biological conversions, the BPR process is not limited by a SRTmin resulting from the maximum growth rate of the organisms. This is because the aerobic SRT should be long enough to oxidize the amount of poly-hydroxy-alkanoates (PHA) stored in the anaerobic phase. This means that the SRTminaer will primarily depend on the PHA conversion kinetics and the maximal achievable PHA content in the cell (storage capacity). The model for the prediction of the minimally required aerobic SRT as a function of kinetic and process parameters was developed and compared with experimental data used to evaluate several operational aspects of BPR in a sequencing batch reactor (SBR) system. The model was proved as capable of describing them satisfactorily.Copyright 1998 John Wiley & Sons, Inc.  相似文献   

11.
The effects of solids retention time (SRT) and temperature on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation were investigated in a series of continuous-flow reactors at pH 10. The experimental results showed that the increase of either SRT or temperature benefited the hydrolysis of WAS and the production of SCFAs. The changes in SRT gave also impact on the percentage of acetic and propionic acids in the fermentative SCFAs, but little influence on that of the slightly long-chain SCFAs, such as n-butyric, iso-butyric, n-valeric and iso-valeric acids. Compared with the control (pH unadjusted) experiment, at SRT of 12d and temperature of 20 degrees C the concentration of SCFAs produced at pH 10 increased from 261.2 to 933.5mg COD/L, and the propionic acid percentage improved from 11.7 to 16.0%. It can be concluded from this investigation that the efficient continuous production of SCFAs at pH 10 is feasible.  相似文献   

12.
Two lab-scale aerobic granular sludge sequencing batch reactors were operated at 20 and 30°C and compared for phosphorus (P) removal efficiency and microbial community composition. P-removal efficiency was higher at 20°C (>90%) than at 30°C (60%) when the sludge retention time (SRT) was controlled at 30 days by removing excess sludge equally throughout the sludge bed. Samples analyzed by fluorescent in situ hybridization (FISH) indicated a segregation of biomass over the sludge bed: in the upper part, Candidatus Competibacter phosphatis (glycogen-accumulating organisms--GAOs) were dominant while in the bottom, Candidatus Accumulibacter phosphatis (polyphosphate-accumulating organisms--PAOs) dominated. In order to favour PAOs over GAOs and hence improve P-removal at 30°C, the SRT was controlled by discharging biomass mainly from the top of the sludge bed (80% of the excess sludge), while bottom granules were removed in minor proportions (20% of the excess sludge). With the selective sludge removal proposed, 100% P-removal efficiency was obtained in the reactor operated at 30°C. In the meantime, the biomass in the 30°C reactor changed in color from brownish-black to white. Big white granules appeared in this system and were completely dominated by PAOs (more than 90% of the microbial population), showing relatively high ash content compared to other granules. In the reactor operated at 20°C, P-removal efficiency remained stable above 90% regardless of the sludge removal procedure for SRT control. The results obtained in this study stress the importance of sludge discharge mainly from the top as well as in minor proportions from the bottom of the sludge bed to control the SRT in order to prevent significant growth of GAOs and remove enough accumulated P from the system, particularly at high temperatures (e.g., 30°C).  相似文献   

13.
AIMS: To study the effects of different solids retention time (SRT) on the nitrification activity and community composition of ammonia-oxidizing bacteria (AOB) in two full-scale activated sludge processes during a 5-month period. METHODS AND RESULTS: The AOB community composition was analysed using fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE), and the identified populations were enumerated by quantitative FISH. Potential nitrification rates were determined in batch tests and the in situ rates were calculated from mass balances of nitrogen in the plants. Increased SRT reduced the nitrification activity, but neither the number per mixed liquor suspended solids nor community composition of AOB were affected. Two dominant AOB populations related to Nitrosomonas europaea and Nitrosomonas oligotropha were identified by FISH, whereas only the latter could be detected by DGGE. CONCLUSIONS: The effect of a longer SRT on the activity was probably because of physiological changes in the AOB community rather than a change in community composition. SIGNIFICANCE AND IMPACT OF THE STUDY: Physiological alterations of a stable AOB community are possible and may stabilize activated sludge processes. The commonly used FISH probes designed to target all beta-proteobacterial AOB does not detect certain Nitrosomonas oligotropha populations, leading to an underestimation of AOB if a wider set of probes is not used.  相似文献   

14.
Anaerobic co-digestion of fruit and vegetable waste (FVW) and activated sludge (AS) was investigated using anaerobic sequencing batch reactors (ASBRs). The effects of AS:FVW ratio and the organic loading rate (OLR) on digesters performances were examined. The mixtures having AS:FVW ratios of 100:00, 65:35, 35:65, by a total solid (TS) basis were operated at an hydraulic retention time (HRT) of 20d. However, 30:70, 20:80, 15:85, 10:90 and 0:100 ratios were tested at an HRT of 10d. To investigate effects of aerobic and anaerobic digestion on the sludge filterability, specific resistance to filtration (R) was also determined. Increasing FVW proportions in the feedstock significantly improved the biogas production yield. The reactor that was fed with a 30:70 ratio showed the highest VS removal and biogas production yield of 88% and 0.57 L g(-1) VS added, respectively. The filterability results showed that the anaerobic effluent was characterised by a slightly better filterability efficiency of 1.6 x 10(16) m kg(-1) than 1.74 x 10(16) m kg(-1) of aerobic effluent. However, FVW addition improved the anaerobic co-digestion effluent filterability (5.52 x 10(14) m kg(-1)).  相似文献   

15.
A novel bioreactor containing self-flocculated anaerobic granular sludge was developed for high-performance hydrogen production from sucrose-based synthetic wastewater. The reactor achieved an optimal volumetric hydrogen production rate of approximately 7.3 L/h/L (7,150 mmol/d/L) and a maximal hydrogen yield of 3.03 mol H2/mol sucrose when it was operated at a hydraulic retention time (HRT) of 0.5 h with an influent sucrose concentration of 20 g COD/L. The gas-phase hydrogen content and substrate conversion also exceeded 40 and 90%, respectively, under optimal conditions. Packing of a small quantity of carrier matrices on the bottom of the upflow reactor significantly stimulated sludge granulation that can be accomplished within 100 h. Among the four carriers examined, spherical activated carbon was the most effective inducer for granular sludge formation. The carrier-induced granular sludge bed (CIGSB) bioreactor was started up with a low HRT of 4-8 h (corresponding to an organic loading rate of 2.5-5 g COD/h/L) and enabled stable operations at an extremely low HRT (up to 0.5 h) without washout of biomass. The granular sludge was rapidly formed in CIGSB supported with activated carbon and reached a maximal concentration of 26 g/L at HRT = 0.5 h. The ability to maintain high biomass concentration at low HRT (i.e., high organic loading rate) highlights the key factor for the remarkable hydrogen production efficiency of the CIGSB processes.  相似文献   

16.
The biodegradability of Pinus radiata bleached kraft mill wastewater by an activated sludge treatment during a period of 280 days was evaluated. The effect of varying hydraulic retention time (HRT) in the range of 48 to 4.5 h and nitrogen (N) and phosphorus (P) addition on removal of biological oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (TSS and VSS), total phenolic compounds, tannin and lignin and reduction of toxicity was investigated. Removal of BOD5 was higher than 90% when HRT varied from 16 to 6 h, but decreased when HRT was less than 6 h. Similar performance was observed for COD removal, which was about 60% when HRT was varied from 16 to 6 h. Removal of total phenolic compounds and tannin and lignin was seriously affected by HRT. N and P addition to maintaining a ratio of 100:5:0.3 provided optimal BOD5, COD and suspended solids removal when HRT varied from 16 to 7 h, and no toxicity (using Daphnia) was detected in the treated effluent. When HRT was less than 6 h, the system showed destabilisation and pH, COD, BOD5 and suspended solids removal decreased.  相似文献   

17.
Summary With the aim of studying the possible utilization of brewery waste water activated sludge for animal feeding, the influence of the solids retention time (SRT) and nitrogen supplementation were investigated, especially with respect to biomass production and biomass composition. It was found that the SRT strongly influenced both parameters. At an SRT of from 4 to 6 days excellent biomass production was obtained. This biomass had the highest protein content and the daily protein production was four times higher than at a SRT of 20 days. Supplementation with urea doubled the protein production, lowered the carbohydrate and poly--hydroxybutyric acid content, but increased the nucleic acid content. The COD removal was better and phosphorus removal increased. In order to study these variables, a multi-channel laboratory system was designed. Because of its simplicity in operation and its versatility this system is described in detail.  相似文献   

18.
Summary Wastewater from fiber board manufacture consisting in a mixture of Pinus radiata, Eucaliptus globulus and Laureliopsis phillipiana (tepa) (3:1:1) has been studied in laboratory scale activated sludge reactors with organic load rate range of 50–1700 gCOD/m3.d. A stable operation at high organic load rate with hydraulic retention time of one day was achieved. Purification efficiencies up to 90 % of COD removal could be achieved in an activated sludge treatment of fiber board wastewater working with 1 day HRT for wood log cooking wastewater and with 4 days HRT when glueing wastewater is added to the cooking wastewater treatment. Suspended solids, color and phenol concentration were negligible in the efluent of the activated sludge system.  相似文献   

19.
The flux variations and resistances accumulated during filtration of activated sludge with sludge retention time (SRT) of 15, 30, and 60 days were analyzed to investigate the dynamic fouling behavior in a submerged nonwoven bioreactor. Different SRT values varied sludge condition and particle size distribution in the supernatants, which caused dissimilar fouling characteristics. Short-term fouling of the nonwoven bioreactor during filtration of activated sludge with SRT of 15 days was fully reversible, and the resistance percentages of solutes, colloids, and suspended solids were 6%, 27%, and 67%, respectively. On the other hand, significant increases of colloid resistance, such as with the filtration of activated sludge with SRT of 30 and 60 days, were related to the occurrence of irreversible fouling. The phenomenon of pore blocking by particles or colloids with size analogous to the pore of nonwoven fabric was a decisive factor leading to irreversible fouling in the large-pore materials.  相似文献   

20.
The effects of different hydraulic retention time (HRT) on (RS)-MCPP utilisation was investigated by decreasing the feed flow rate in an anaerobic membrane bioreactor (AnMBR). Results showed an average COD removal efficiency of 91.4%, 96.9% and 94.4% when the reactor was operated at HRT 3, 7 and 17 d, respectively. However, when the HRT was reduced to 1d, the COD removal efficiency declined to just only 60%, confirming the AnMBR is stable to a large transient hydraulic shock loads. The (RS)-MCPP removal efficiency fluctuated from 6% to 39% at HRT 3 d, however when it was increased to 7 and 17 d, the removal efficiency increased to an average of 60% and 74.5%. In addition, (RS)-MCPP specific utilisation rates (SUR) were dependent on the HRT and gradually improved from 18 to 43 μg mg VSS(-1) d(-1) as flow rate increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号