首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
碳同位素示踪技术具有高度的专一性和灵敏度,经过几十年的发展,形成了一系列成熟的标记方法,在陆地生态系统碳循环过程的研究中已得到广泛应用。目前,自然丰度法、与13C贫化示踪技术结合的自由空气中气体浓度增加(FACE)实验、脉冲与连续标记法以及碳同位素高丰度底物富集标记法是研究陆地生态系统碳循环过程常用的碳同位素示踪方法;通过将长期定位实验和室内模拟实验结合,量化光合碳在植物-土壤系统的传输与分配特征,明确植物光合碳对土壤有机质的来源、稳定化过程的影响及其微生物驱动机制;阐明土壤碳动态变化(迁移与转化)和新碳与老碳对土壤碳库储量的相对贡献,评估有机碳输入、转化与稳定的生物与非生物微观界面过程机制。然而,生态系统碳循环受气候、植被、人为活动等多因素影响,碳同位素技术需要结合质谱、光谱技术实现原位示踪,结合分子生物学技术阐明其微生物驱动机制,从而构建灵敏、准确、多尺度、多方位的同位素示踪技术体系。因此,该文以稳定碳同位素为主,综述了碳同位素示踪技术的原理、分析方法和在陆地生态系统碳循环过程中的应用进展,归纳总结了碳同位素示踪技术结合原位检测技术和分子生物学技术的研究进展和应用前景,并对碳同位素示踪技术存在的问题进行了分析和展望。  相似文献   

2.
农田作物同化碳输入与周转的生物地球化学过程   总被引:8,自引:0,他引:8  
作物同化碳在“大气-植物-土壤”系统中流通的生物地球化学过程,显著影响全球陆地生态系统碳循环过程。作物同化碳是土壤有机碳的重要来源,与根际环境及作物生长发育有密切联系,但由于其复杂性和多变性,作物生长期内同化碳在土壤中的分配、转化与稳定的机理尚不十分清楚。因此,综述了作物同化碳向土壤碳库输入及其对土壤有机碳库的贡献,在土壤碳库中的分配与转化特征,在土壤中流通的微生物机制以及同化碳在土壤-微生物系统分配、稳定的微观机制。探讨同化碳在地上部-根际-土壤系统中的分配及调节机制,土壤界面同化碳流动过程与土壤微生物多样性形成的关系;提出了在不同生态系统尺度上加强作物同化碳在土壤-作物系统中分配过程的定量研究对于明确陆地生态碳循环过程的重要意义;指出了研究作物同化碳向土壤碳库迁移、分配定量过程与机制的重要性,以及应用显微镜成像技术与同位素示踪技术相结合的纳米二次离子质谱技术、和微生物分子与群落生态相偶联的技术是未来研究作物同化碳生物地球化学特性的有效手段。  相似文献   

3.
张蕊  赵钰  何红波  张旭东 《生态学杂志》2017,28(7):2379-2388
大气CO2浓度升高影响植物光合作用过程和生物量积累,改变植物地上和地下生物量的动态分配.土壤有机质的形成和周转依赖于植物组分的输入,因此,CO2浓度升高所造成的植物生理和代谢的变化对土壤碳库收支平衡具有重要影响.采用稳定碳同位素(13C)技术研究土壤-植物系统的碳循环可阐明大气CO2浓度升高条件下光合碳在植物各器官的分配特征和时间动态,明确光合碳在土壤中的积累、分解与迁移转化过程以及对土壤有机碳库周转的影响.本文综述了基于13C自然丰度法或13C示踪技术研究大气CO2浓度升高对土壤-植物系统碳循环的影响,主要包括:1)对植物光合作用的同位素分馏的影响;2)对植物光合碳(新碳)分配动态的影响;3)对土壤有机碳新老碳库动态以及微生物转化过程的影响.明确上述过程及其调控机制可为预测CO2浓度升高对陆地生态系统碳循环及源汇效应的长期影响奠定基础.  相似文献   

4.
土壤微生物在陆地生态系统元素循环中扮演着关键角色,对土壤健康、粮食安全和全球气候变化发挥着重要的调节作用。土壤微生物同化代谢产物对土壤碳储存与有机质维持的贡献不容忽视。近年来,以微生物代谢和死亡残体生成过程为核心提出的土壤微生物碳泵概念体系得到了广泛关注,它主要描述了以土壤异养微生物代谢为驱动的土壤有机碳形成和稳定化过程,是目前陆地生态系统碳固存的重要机制体系与研究热点。本文对该体系的研究进展进行了梳理,并提出了引入自养微生物固碳通道与结合土壤矿物碳泵概念的土壤微生物碳泵概念体系2.0,以期丰富和完善现有的微生物介导的陆地生态系统土壤碳循环与固持机制,为实现我国“双碳”目标提供理论支撑。  相似文献   

5.
基于稳定同位素的SPAC水碳拆分及耦合研究进展   总被引:1,自引:0,他引:1  
土壤-植被-大气连续体(SPAC)是陆地水文学、生态学和全球变化领域的重要研究对象,其水碳循环过程及耦合机制是前沿性问题.稳定同位素技术示踪、整合和指示的特征有助于评估分析生态系统固碳和耗水情况.本文在简述稳定同位素应用原理和技术的基础上,重点阐释了基于稳定同位素光学技术的SPAC系统水碳交换研究进展,包括:在净碳通量中拆分光合与呼吸量,在蒸散通量中拆分蒸腾与蒸发量,以及在系统尺度上的水碳耦合研究.新兴的技术和方法实现了生态系统尺度上长期高频的同位素观测,但在测量精准度、生态系统呼吸拆分、非稳态模型适应性、尺度转换和水碳耦合机制等方面存在挑战.本文探讨了现有主要研究成果、局限性以及未来研究展望,以期对稳定同位素生态学领域的新研究和技术发展有所帮助.  相似文献   

6.
大气CO2浓度升高影响植物光合作用过程和生物量积累,改变植物地上和地下生物量的动态分配.土壤有机质的形成和周转依赖于植物组分的输入,因此,CO2浓度升高所造成的植物生理和代谢的变化对土壤碳库收支平衡具有重要影响.采用稳定碳同位素(13C)技术研究土壤-植物系统的碳循环可阐明大气CO2浓度升高条件下光合碳在植物各器官的分配特征和时间动态,明确光合碳在土壤中的积累、分解与迁移转化过程以及对土壤有机碳库周转的影响.本文综述了基于13C自然丰度法或13C示踪技术研究大气CO2浓度升高对土壤-植物系统碳循环的影响,主要包括:1)对植物光合作用的同位素分馏的影响;2)对植物光合碳(新碳)分配动态的影响;3)对土壤有机碳新老碳库动态以及微生物转化过程的影响.明确上述过程及其调控机制可为预测CO2浓度升高对陆地生态系统碳循环及源汇效应的长期影响奠定基础.  相似文献   

7.
碳作为重要的生命元素,在土壤-植物系统物质循环中发挥重要作用.作为一种天然的示踪物,稳定碳同位素(13C)较放射性同位素具有安全、无污染、易控制的优点,在土壤-植物生态系统碳循环研究中得到广泛应用.通过检测土壤-植物体系中稳定碳同位素的自然丰度或采用稳定碳同位素标记有机材料,能够较真实地了解植物的光合特性、光合产物在土壤-植物体系中的运转及其在土壤中的分解、转化等过程.本文概述了稳定碳同位素技术在植物光合作用及光合产物运转、古气候重建、土壤有机质周转以及植物-根际微生物相互作用等方面的研究进展,并针对当前研究中存在的问题提出了今后的研究展望.  相似文献   

8.
作物生育期内光合碳在地下部的分配及转化   总被引:4,自引:0,他引:4  
光合碳是"大气-植物-土壤"系统碳循环的重要组成部分,也是土壤有机碳的重要来源.在农田生态系统中,作物生长期内光合碳在地下部的去向及代谢机理易被忽视,此方面的研究对于全面认识植物-土壤-微生物间的互作关系、农田土壤质量变化及全球碳循环规律却是必不可少的.本文综述了作物生育期内光合碳在地下部的动态分配、其对土壤有机碳的贡献及微生物在光合碳转化中的作用,总结了碳示踪技术;提出应加强在典型土壤类型上的光合碳研究,明确其对不同土壤有机碳组分贡献;重点开展大豆、玉米等作物光合碳在地下部动态分配研究;探讨根系分泌含碳化合物与微生物利用的关系;强调气候条件和农艺措施等综合因素对碳分配的影响.  相似文献   

9.
程淑兰  方华军  徐梦  耿静  何舜  于光夏  曹子铖 《生态学报》2018,38(23):8285-8295
大气氮沉降增加倾向于促进受氮限制陆地生态系统地上生物量,但是对地下碳过程和土壤碳截存的影响结果迥异,导致陆地生态系统“氮促碳汇”的评估存在很大的不确定性。大气氮沉降输入直接影响微生物活性或间接影响底物质量,改变凋落物和土壤有机质(SOM)的分解速率和分解程度,进而影响土壤有机碳(SOC)的积累与损耗过程。过去相关研究主要集中在土壤碳转化过程和碳储量动态方面,缺乏植物-微生物-SOM交互作用的理解,对土壤碳截存调控的生物化学和微生物学机理尚不清楚。本文以地下碳循环过程为主线,分别综述了氮沉降增加对植物地下碳分配、SOC激发效应、微生物群落碳代谢过程的影响,深入分析SOM化学稳定性与微生物群落动态的关系。该领域研究的薄弱环节体现在:(1)增氮倾向于降低根系的生长和周转,对根际沉积碳分配(数量和格局)的影响及驱动因素不明确;(2)虽然认识到氮素有效性影响土壤激发效应的方向和强度,但是氧化态NO-3和还原态NH+4输入对有机质激发效应的差异性影响及潜在机理知之甚少;(3)微生物碳利用效率(CUE)是微生物群落碳代谢的关键表征,能够很好地解释土壤碳的积累与损耗过程;由于缺乏适宜的测定方法,难以准确量化土壤微生物的CUE及微生物生物量的周转时间;(4)增氮会抑制土壤真菌群落及其胞外酶活性,对细菌群落组成的影响尚未定论,有关SOM化学质量与土壤微生物群落活性、组成之间的耦合关系尚不清楚。未来研究应基于长期的氮添加控制实验平台,结合碳氧稳定性同位素示踪、有机质化学、分子生物学和宏基因组学等方法,深入分析植物同化碳的地下分配规律、微生物碳代谢和周转、有机质化学结构与功能微生物群落的耦合关系等关键环节。上述研究将有助于揭示植物-土壤-微生物交互作用对SOC动态的调控机制,完善陆地生态系统碳-氮耦合循环模型,有效降低区域陆地碳汇评估的不确定性,并可为陆地生态系统应对全球变化提供科学依据。  相似文献   

10.
稳定碳同位素技术在土壤-植物系统碳循环中的应用   总被引:6,自引:0,他引:6  
碳作为重要的生命元素,在土壤 植物系统物质循环中发挥重要作用.作为一种天然的示踪物,稳定碳同位素(13C)较放射性同位素具有安全、无污染、易控制的优点,在土壤 植物生态系统碳循环研究中得到广泛应用.通过检测土壤 植物体系中稳定碳同位素的自然丰度或采用稳定碳同位素标记有机材料,能够较真实地了解植物的光合特性、光合产物在土壤 植物体系中的运转及其在土壤中的分解、转化等过程.本文概述了稳定碳同位素技术在植物光合作用及光合产物运转、古气候重建、土壤有机质周转以及植物 根际微生物相互作用等方面的研究进展,并针对当前研究中存在的问题提出了今后的研究展望.  相似文献   

11.
通过测定上海市青浦区东风港百慕大、白花三叶草、高羊茅和白茅等4种典型滨岸草本植物各组织以及不同垂直深度土壤有机质δ13C值,对滨岸草地生态系统的植物-土壤碳稳定同位素特征进行了分析.结果表明: 白花三叶草、高羊茅属于C3植物,百慕大、白茅属于C4植物,其茎叶、凋落物和根系各组织间δ13C值无显著差异.C3和C4植物样带表层土壤有机质δ13C值随着土壤深度递增而呈现截然不同的变化特征,这与样带本底δ13C值以及碳稳定同位素分馏效应有关,同时还受植物根系分布深度的影响.植物输入是土壤有机碳(SOC)的最主要来源,植物有机体δ13C组成对土壤有机质δ13C值有直接影响,植物各组分δ13C值与土壤有机质δ13C值均存在极显著相关.4种草本植物样带SOC含量与δ13C值均呈极显著相关,其中,C3植物样带SOC含量与δ13C值呈线性负相关,C4植物样带SOC含量与δ13C值呈线性正相关.  相似文献   

12.
研究外源新输入碳进入生物结皮后在各碳组分间的分配特征,可以为理解生物结皮参与碳地球化学循环过程提供数据支持和理论依据。本研究针对黄土高原典型苔藓生物结皮,借助13C脉冲标记技术,精确示踪外源新输入碳在生物结皮碳组分中的分配特征及其与无结皮裸地的差异,揭示生物结皮对碳循环的影响。结果表明: 1)由于生物结皮养分循环速率较慢,且与维管束植物相比,其主要生物成分苔藓的生物量有限,导致生物结皮各碳组分的13C丰度值均随时间变化表现相对平稳。2)生物结皮的各碳组分13C含量均明显高于无结皮裸地,其有机碳、微生物生物量碳、可溶性有机碳中13C含量平均分别为0.258、0.078、0.004 mg·kg-1,分别比裸地高3.1、18.5、2.6倍,且苔藓植株13C含量高达1.45 mg·kg-1。3)生物结皮改变了有机碳各组分的分配特征,其新同化的碳主要分配于活性有机碳库和结皮生物中,表现为13C在微生物生物量碳中的分配率(30.6%)高于可溶性有机碳(1.7%),而苔藓植株的13C分配率为20.3%。4)生物结皮中微生物生物量13C的转移量和库容量分别是裸地的15.7和19.5倍,但其周转率(每月2.94次)略低于裸地(每月3.30次),相应周转期是裸地的1.1倍。综上,生物结皮改变了土壤有机碳组分的分配特征,提升了碳周转速率,在干旱荒漠生态系统碳循环中的作用不容忽视。  相似文献   

13.
放牧是人类对草地进行利用的重要方式之一, 放牧影响草地生态系统的结构和功能, 改变植物光合碳(C)分配, 进而改变土壤有机碳的储存。青藏高原的高寒草甸是世界上海拔最高的草地生态系统, 寒冷季节长等独特的环境特点使其具有高的土壤有机碳含量。为了揭示长期轻度放牧对植物光合碳分配及植物光合碳在各库之间运移的影响, 基于在青藏高原矮嵩草草甸开展的长期冬季轻度放牧和围栏封育实验, 利用 13C示踪方法揭示了放牧对光合碳在植物地上、地下组织的分配以及光合碳在植物、土壤各碳库中的运移和滞留。研究结果发现, 在 13C标记之后第30天, 冬季轻度放牧样地的植物地上部分内 13C约占开始时 13C含量的32%, 根和土壤中的 13C约占22%, 植物地上部分呼吸中的 13C量约占30%。在放牧和围封这两个不同处理中, 土壤中光合碳的滞留以及光合碳随土壤呼吸释放的速率存在显著差异。长期冬季轻度放牧促使植物将更多的光合碳输入到根和土壤碳库中。与围栏封育处理相比较, 放牧处理下的 13C从植物地上部分输入到地下的速率较快, 通过土壤呼吸释放的速率也快, 而植物地上部分和植物地上部分呼吸中 13C的量较低。另外, 高寒矮嵩草草甸土壤C储量在冬季轻度放牧和围栏封育处理下没有显著差异。我们的研究表明, 尽管冬季轻度放牧改变了植物光合碳分配在地上和地下碳库中的分配, 但是没有显著影响土壤碳库储量。  相似文献   

14.
土壤碳、氮稳定同位素自然丰度(δ13C和δ15N)随土壤深度变化的研究,对揭示碳、氮元素生物地球化学循环机制具有重要意义。本文在概述土壤剖面δ13C和δ15N垂直分布特征的基础上,重点介绍了土壤δ13C和δ15N垂直分布模式的影响机制。土壤剖面δ13C垂直分布模式的影响机制主要有3种: 1)植被δ13C值的历史变化;2)植物群落C3-C4植物优势度变化;3)分解过程中13C富集的微生物源碳的积累。此外,讨论了13C休斯效应对土壤剖面δ13C垂直分布模式的影响。土壤剖面δ15N垂直分布模式的影响机制主要有4种: 1)反硝化过程产生的15N贫化气体的损失;2)分解过程中15N富集的微生物源氮的积累;3)菌根将15N贫化的含氮化合物转移到植物而在深层土壤积累15N富集的菌根真菌残留物;4)土壤有机质-矿物相互作用。最后提出了未来土壤剖面碳、氮稳定同位素自然丰度的垂直分布模式研究应该关注的重点。  相似文献   

15.
植物凋落物碳输入显著影响陆地生态系统土壤CO2排放和有机碳(SOC)形成,然而,针对不同质地土壤添加不同化学结构外源碳去向依然不清楚。本研究将13C标记的葡萄糖、淀粉和纤维素添加至红壤和风沙土,比较2种质地土壤添加不同化学结构外源碳在土壤释放的CO2、SOC、可溶性有机碳(DOC)和微生物生物量碳(MBC)库的净累积量、回收率及贡献比例上的差异。结果表明: 添加外源有机碳显著提高了CO2、SOC、DOC和MBC的δ13C值,且随着外源有机碳化学结构复杂性的增加,CO2的δ13C峰值依次延迟出现;外源有机碳种类、土壤类型和培养时间均显著改变外源碳去向及其在各碳库的贡献比例;在风沙土中,外源有机碳更多被矿化为CO2,且CO2库的外源碳净累积量和回收率大小依次为葡萄糖>淀粉>纤维素;红壤添加外源碳转变为SOC的累积量和回收率显著高于风沙土,且红壤SOC库的外源碳净累积量和回收率大小顺序也为葡萄糖>淀粉>纤维素。可见,外源有机碳化学结构和土壤质地共同调控外源碳去向及累积贡献。  相似文献   

16.
大气CO2浓度升高对土壤氮素转化过程产生重要影响,研究其变化有助于更好地预测陆地生态系统的固碳潜力.氮同位素自然丰度作为生态系统氮素循环过程的综合指标能够有效地指示CO2浓度升高对土壤氮素转化过程的影响.本研究采用开顶箱CO2 熏蒸法研究连续10年的大气CO2 浓度升高对我国东北地区蒙古栎及其土壤和微生物生物量碳、氮同位素自然丰度的影响.结果表明: 大气CO2浓度升高改变了土壤氮循环过程,增加了土壤微生物和植物叶片δ15N;促进了富13C土壤有机碳分解,中和了贫13C植物光合碳输入的效果,导致土壤可溶性有机碳和微生物碳δ13C在CO2升高条件下没有发生显著变化.这些结果表明,CO2浓度升高很可能促进了土壤有机质矿化过程,并加剧了系统氮限制的状态.  相似文献   

17.
大气CO2浓度升高对土壤氮素转化过程产生重要影响,研究其变化有助于更好地预测陆地生态系统的固碳潜力.氮同位素自然丰度作为生态系统氮素循环过程的综合指标能够有效地指示CO2浓度升高对土壤氮素转化过程的影响.本研究采用开顶箱CO2 熏蒸法研究连续10年的大气CO2 浓度升高对我国东北地区蒙古栎及其土壤和微生物生物量碳、氮同位素自然丰度的影响.结果表明: 大气CO2浓度升高改变了土壤氮循环过程,增加了土壤微生物和植物叶片δ15N;促进了富13C土壤有机碳分解,中和了贫13C植物光合碳输入的效果,导致土壤可溶性有机碳和微生物碳δ13C在CO2升高条件下没有发生显著变化.这些结果表明,CO2浓度升高很可能促进了土壤有机质矿化过程,并加剧了系统氮限制的状态.  相似文献   

18.
稳定碳同位素组成能精确指示生态系统碳循环过程,可以为深入研究森林演替进程对碳循环过程和固碳潜力的影响提供关键信息.利用稳定碳同位素技术对长白山阔叶红松林演替序列3种林分——中龄杨桦次生林、成熟杨桦次生林、阔叶红松林的叶片、树干、根系、凋落物和土壤δ13C值及碳、氮元素含量进行测定.结果表明: 各演替序列优势树种叶片δ13C从冠上到冠下均呈降低趋势;树干δ13C表现为树皮小于木质部;根系δ13C表现为细根小于粗根.阔叶红松林未分解凋落物δ13C小于半分解及全分解凋落物,次生林相反;土壤δ13C沿深度逐渐增加.总体上,δ13C值叶片<凋落物<根系<树干<土壤,说明植物各器官之间有明显的碳同位素分馏效应,且相同器官不同部位之间也存在差异;植物δ13C沿演替方向先减小后增加,土壤δ13C沿演替方向不断增加,且变化规律可以通过氮元素含量与碳同位素分馏效应的关系解释,说明长白山阔叶红松林演替过程优势树种和碳周转速率的变化影响了碳同位素分馏.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号