首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   15篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2008年   2篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
施用生物炭6年后对稻田土壤酶活性及肥力的影响   总被引:4,自引:0,他引:4  
利用田间定位试验,研究0(BC0)、7.5(BC1)、15(BC2)和22.5(BC3)t·hm-2水稻秸秆生物炭及3.75 t·hm-2水稻秸秆(STR)一次性施加6年后对稻田土壤肥力及酶活性的影响.结果表明: 施用生物炭6年后土壤有机碳、有效磷和速效钾含量显著增加,增幅分别为34.6%、12.4%和26.2%,土壤pH值和容重显著降低,但对土壤全氮含量无显著影响.土壤脲酶和酸性磷酸酶的活性显著增加,土壤荧光素二乙酸酯酶(FDA水解酶)和芳基硫酸酯酶的活性受到不同程度的抑制,其中,BC2处理的土壤脲酶活性增加量最大,增幅为36.5%.土壤酸性磷酸酶活性随着生物炭施加量的增加而增加,与土壤速效磷含量呈显著正相关关系;土壤FDA水解酶和脲酶主要与土壤速效钾含量有关;酸性磷酸酶和芳基硫酸酯酶与土壤容重呈显著正相关.施用生物炭6年后土壤脱氢酶和多酚氧化酶活性明显升高,增幅分别为48.8%和27.5%,而过氧化氢酶活性逐渐下降,且显著低于对照BC0.STR处理显著增加了土壤脲酶、FDA水解酶、脱氢酶、酸性磷酸酶和芳基硫酸酯酶的活性,降低了过氧化氢酶和多酚氧化酶的活性,降幅分别为23.4%和15.9%.  相似文献   
2.
生物炭的稳定性及其对矿物改性的响应机制研究进展   总被引:3,自引:0,他引:3  
生物炭具有高度的碳素稳定性,是一种能有效缓解温室效应的固碳材料.研发碳素持留率高和稳定性强的生物炭对固碳减排具有重要意义.矿物改性处理能对生物炭的稳定性起调控作用,但目前相关研究并未得到足够重视,相应调控机理尚不十分清楚.本研究首先对生物炭稳定性的评价指标进行了归纳,主要包括H/C原子比、O/C原子比、稳定性系数R50、挥发性物质含量、碳素热失重率、碳素(化学)氧化损失率、微生物矿化量等.其次,在分析生物炭稳定性影响因素(如原料类型、炭化条件、外界环境等)的基础上,综述了矿物改性对生物炭稳定性影响的研究进展,并探讨了稳定性增强和减弱的响应机制,认为生物炭稳定性的增强响应主要是基于矿物本身的物理阻隔作用,以及矿物与生物炭之间通过交互作用形成的有机矿物复合体对生物炭起到的保护作用,在一定程度上抑制生物炭的降解;而生物炭稳定性的减弱响应则主要与特殊矿物组分有关,例如含铁矿物组分在高温下促进生物炭的降解.最后对未来的研究方向进行了展望,以期进一步推动生物炭固碳减排技术的发展,并为获得稳定性更强的生物炭提供技术支撑和理论依据.  相似文献   
3.
生物炭对农田土壤氨挥发的影响机制研究进展   总被引:1,自引:0,他引:1  
降低土壤氨挥发量是农田生态系统中减少土壤氮素损失、提高氮肥利用率的关键途径之一。生物炭具有独特的理化性质,施入土壤后可改变土壤理化性状,影响土壤氮素循环,并对农田土壤中氨挥发产生重要的影响。本文首先介绍了稻田和旱田两种土地利用方式下农田氨挥发过程及其影响因素(气候条件、土壤环境、施肥管理等);其次,重点综述了生物炭对农田生态系统氨挥发影响的研究进展,并从物理吸附机制、气液平衡机制、生物化学过程调节机制等方面探讨了生物炭介入下农田土壤氨挥发的响应机制,认为土壤氨挥发减排的响应主要是基于生物炭表面含氧官能团对土壤NH4+和NH3的吸附作用及促进土壤硝化作用;而生物炭增加土壤氨挥发排放主要与生物炭提高土壤pH值和透气性、增强土壤有机氮矿化微生物活性有关。最后,对生物炭减少土壤氨挥发、提高氮肥利用率的研究方向进行了展望。  相似文献   
4.
以蚕丝被废弃物为原料,在300、500和700℃高温缺氧条件下热解炭化制备成3种生物炭(BC300、BC500和BC700).利用扫描电镜(SEM)、傅里叶红外光谱仪(FT-IR)、X-射线衍射仪(XRD)、比表面积分析仪等对其理化性质进行表征,并研究了不同温度下制备的生物炭对溶液中Cd~(2+)的吸附特性.结果表明:随着炭化温度上升,BET比表面积、pH、灰分均增大,生物炭表面形态结构越来越不规则.XRD结果显示:不同温度下获得的生物炭中均含有一定量的方解石,FT-IR光谱图上的峰主要为-OH和方解石典型的吸收峰;pH对生物炭吸附Cd~(2+)的影响不大;Langmuir方程能更好地拟合3种生物炭对Cd~(2+)的吸附等温过程,其最大吸附量分别为25.61、52.41和91.07 mg·g-1.3种生物炭对Cd~(2+)吸附过程均更符合准二级动力学方程,且BC700对Cd~(2+)的吸附效果最佳.进一步研究离子浓度及阳离子共存对BC700吸附Cd~(2+)的影响,结果显示:NaCl浓度越高,对Cd~(2+)的吸附抑制越明显;共存阳离子中,Cd~(2+)和Mg~(2+)对Cd~(2+)的吸附抑制更明显,而K~+几乎无影响.因此,以蚕丝被废弃物制备的生物炭作为去除水体中Cd~(2+)的吸附剂具有较强的应用潜力.  相似文献   
5.
以蚕丝被废弃物为原料,在300、500和700 ℃高温缺氧条件下热解炭化制备成3种生物炭(BC300、BC500和BC700).利用扫描电镜(SEM)、傅里叶红外光谱仪(FT-IR)、X-射线衍射仪(XRD)、比表面积分析仪等对其理化性质进行表征,并研究了不同温度下制备的生物炭对溶液中Cd2+的吸附特性.结果表明: 随着炭化温度上升,BET比表面积、pH、灰分均增大,生物炭表面形态结构越来越不规则.XRD结果显示:不同温度下获得的生物炭中均含有一定量的方解石,FT-IR光谱图上的峰主要为-OH和方解石典型的吸收峰;pH对生物炭吸附Cd2+的影响不大;Langmuir方程能更好地拟合3种生物炭对Cd2+的吸附等温过程,其最大吸附量分别为25.61、52.41和91.07 mg·g-1.3种生物炭对Cd2+吸附过程均更符合准二级动力学方程,且BC700对Cd2+的吸附效果最佳.进一步研究离子浓度及阳离子共存对BC700吸附Cd2+的影响,结果显示: NaCl浓度越高,对Cd2+的吸附抑制越明显;共存阳离子中,Ca2+和Mg2+对Cd2+的吸附抑制更明显,而K+几乎无影响.因此,以蚕丝被废弃物制备的生物炭作为去除水体中Cd2+的吸附剂具有较强的应用潜力.  相似文献   
6.
稳定碳同位素技术在土壤-植物系统碳循环中的应用   总被引:6,自引:0,他引:6  
碳作为重要的生命元素,在土壤 植物系统物质循环中发挥重要作用.作为一种天然的示踪物,稳定碳同位素(13C)较放射性同位素具有安全、无污染、易控制的优点,在土壤 植物生态系统碳循环研究中得到广泛应用.通过检测土壤 植物体系中稳定碳同位素的自然丰度或采用稳定碳同位素标记有机材料,能够较真实地了解植物的光合特性、光合产物在土壤 植物体系中的运转及其在土壤中的分解、转化等过程.本文概述了稳定碳同位素技术在植物光合作用及光合产物运转、古气候重建、土壤有机质周转以及植物 根际微生物相互作用等方面的研究进展,并针对当前研究中存在的问题提出了今后的研究展望.  相似文献   
7.
生物质炭化还田对稻田温室气体排放及土壤理化性质的影响   总被引:16,自引:0,他引:16  
通过水稻种植田间试验,研究了水稻秸秆直接还田、水稻秸秆与生活垃圾炭化后还田对稻田温室气体CH4、CO2和N2O排放及土壤理化性质和水稻产量的影响.结果表明:与直接还田相比,秸秆炭化后还田可显著降低稻田CH4和N2O的累积排放量,降幅分别为64.2%~78.5%和16.3%~18.4%.与不添加生物炭相比,无论种植水稻与否,添加秸秆炭和垃圾炭均显著降低了稻田N2O的累积排放量;不种植水稻情况下,添加垃圾炭显著降低了稻田CO2的累积排放量,降幅为25.3%.秸秆炭对提高稻田土壤pH和速效钾含量的作用优于垃圾炭.两种生物炭均能显著提高稻田土壤有机碳含量,但对土壤容重、全氮、有效磷、阳离子交换量及水稻籽粒产量均未产生显著影响.与秸秆直接还田相比,秸秆炭化后还田对水稻增产的效果更佳.  相似文献   
8.
垃圾填埋场氧化亚氮排放控制研究进展   总被引:3,自引:0,他引:3  
填埋是国内外城市生活垃圾处理的一种主要方式.垃圾填埋场是温室气体氧化亚氮(N2O)和甲烷(CH4)的重要排放源.作为一种高效痕量的温室气体,N2O具有极高的潜在增温效应,其每分子潜在的增温作用是二氧化碳(CO2)的296倍.而且N2O能在大气中长期稳定存在,对臭氧层具有较强的破坏作用.本文针对垃圾填埋场N2O排放的控制研究,概述了垃圾填埋处理过程中主要排放源的N2O排放及其影响因素,提出了现阶段适应我国垃圾填埋场N2O排放控制的一系列措施,并展望了垃圾填埋场温室气体N2O排放控制理论和技术的研究方向.  相似文献   
9.
生物炭对土壤有机碳矿化的激发效应及其机理研究进展   总被引:11,自引:0,他引:11  
近年来由于生物炭具有碳素稳定性强和孔隙结构发达等特性,其在土壤固碳减排方面的作用研究受到广泛关注.然而当生物炭进入土壤环境后最终是增加土壤碳的储存还是促进土壤碳的排放?目前学术界对该问题仍存在争议.生物炭对土壤有机碳的激发效应及其机理研究有待进一步深入开展.本文在分析生物炭自身碳素组分和稳定性、孔隙结构及表面形态特征的基础上,综述了添加生物炭对土壤本底有机碳矿化产生激发效应的研究进展,分别阐述了产生正激发和负激发效应(即促进和抑制矿化)的机制机理,认为正激发效应主要是基于生物炭促进土壤微生物活性增强、生物炭中易分解组分的优先矿化以及由此引发的土壤微生物的共代谢作用,而负激发效应主要是基于生物炭内部孔隙结构和外表面对土壤有机质的包封作用和吸附保护作用、生物炭促进土壤有机-无机复合体形成的稳定化作用、生物炭对土壤微生物及其酶活性的抑制作用.最后对今后相关研究方向进行了展望,以期为生物炭在土壤固碳减排方面的应用提供理论依据.  相似文献   
10.
探究施用生物炭和脲酶抑制剂/硝化抑制剂对亚热带水稻土氮素硝化过程的调控作用、氨挥发和N2O排放的温室效应潜能的影响,确定生物炭与硝化和脲酶抑制剂的最佳组合,可为削减施用氮肥带来的活性氮气体排放对环境的负面风险提供理论依据。本研究采用室内好气培养试验方式,以单施尿素(N)为对照,设置7个试验处理[尿素+生物炭(NB),尿素+硝化抑制剂(N+NI),尿素+脲酶抑制剂(N+UI),尿素+硝化抑制剂+脲酶抑制剂(N+NIUI),尿素+硝化抑制剂+生物炭(NB+NI),尿素+脲酶抑制剂+生物炭(NB+UI),尿素+硝化抑制剂+脲酶抑制剂+生物炭(NB+NIUI)],观测生物炭与脲酶抑制剂(NBPT)/硝化抑制剂(DMPP)配施下土壤无机氮含量、N2O排放及氨挥发的变化动态。结果表明: 1)培养期间,与N处理(5.11 mg N·kg-1·d-1)相比,NB处理的土壤硝化速率常数显著增加33.9%,N+NI处理显著降低22.9%;NB处理显著提高了氨氧化细菌(AOB)丰度,增幅达56.0%。2)与N处理相比,N+NI和NB+NI处理的NH3累积排放量均显著增加约49%;N+UI处理降低了NH3累积损失量,NB+UI处理抑制效果更明显。3)各处理的N2O排放速率高峰均出现在施肥后前10 d;NB处理的N2O排放高峰出现最早,N处理排放速率最高(5.87 μg·kg-1·h-1);硝化抑制剂与脲酶抑制剂配施减少土壤N2O排放的效果最佳。综合计算各处理直接N2O和间接N2O(NH3)排放产生的温室效应潜能(GWP)发现,N+NI和NB+NI处理较N处理分别增加了34.8%和40.9%,而NB和NB+UI处理的GWP显著降低了45.9%和60.5%。因此,生物炭与脲酶抑制剂配施对降低土壤活性氮气体排放所产生的温室效应潜能效果最佳。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号