首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Interaction between cytotoxic T lymphocyte-associated antigen-4(CTLA4,CD152) and B7 molecules (B7-1 and B7-2) is of importance in the cellular events of lymphocyte,including antigen-specific T-cell activation and induction of autoreactive T-cell.We describe haere the first introduction of a murine soluble CTLA4 gene,CTLA4Ig,to Mm1 cells,a macrophagic cell line.CTLA4Ig was successfully expressed on Mm1 cells and the expressed CTLA4Ig was found to be functionally active in their binding to B7 molecules by flow cytometry and immunofluorescence studies.The biological activity of CTLA4Ig from the transfected Mm1 cells was studied and showed inhibitory activity on mixed lymphocyte culture.A high CTLA4Ig producing macrophagic cell line was obtained.As Mm1 cells were regarded as difficult for gene transfection and there has so far been no report on expression of CTLA4Ig gene on Mm1 cells,these results suggested that the CELA4Ig expressing Mm1 cells could be useful for analysis of CTLA4 and B8 molecule interaction in both macrophage and T-cell.  相似文献   

2.
CTLA4Ig融合蛋白在CHO细胞中的表达   总被引:1,自引:0,他引:1  
CTLA4Ig是人CTLA4胞外区与人免疫球蛋白铰链区、CH2区、CH3区组成的融合蛋白,可以与B7结合,通过阻断B7与CD28的结合,从而阻断B7介导的T细胞活化必需的共刺激信号,可作为免疫抑制剂用于器官移植。将CTLA4Ig融合分子克隆到真核表达载体pCI-dhfr,并用脂质体方法转染到COS7和CHO-dhfr-细胞中,用氨甲喋呤筛选转染的CHO-dhfr-细胞。用RT-PCR、ELISA、细胞免疫荧光染色和Western-blot鉴定重组蛋白的表达。采用A蛋白纯化重组蛋白。  相似文献   

3.
In addition to TCR-derived signals, costimulatory signals derived from stimulation of the CD28 molecule by its natural ligand, B7, have been shown to be required for CD4+8- T cell activation. We investigate the ability of B7 to provide costimulatory signals necessary to drive proliferation and differentiation of virgin CD4-8+ T-cells that express a transgenic TCR specific for the male (H-Y) Ag presented by H-2Db class I MHC molecules. Virgin male-specific CD4-8+ T cells can be activated either with B7 transfected chinese hamster ovary (CHO) cells and T3.70, a mAb specific for the transgenic TCR-alpha chain that is associated with male-reactivity, or by male dendritic cells (DC). Activated CD4-8+ T cells proliferated in the absence of exogenously added IL-2. IL-2 activity was detected in supernatants of CD4-8+T3.70+ cells that were stimulated with T3.70 and B7+CHO cells. The response of CD4-8+T3.70+ cells to T3.70/B7+CHO or to male DC stimulation were inhibited by CTLA4Ig, a fusion protein comprising the extracellular portion of CTLA4 and human IgG C gamma 1. It has been previously shown that CTLA4Ig binds B7 with high affinity. Staining with CTLA4Ig revealed that DC express about 50 times more B7 than CD4-8+ T cells. CTLA4Ig also specifically blocked the proliferation of male-reactive cells in vivo. We have also used an in vitro deletion assay whereby immature CD4+8+ thymocytes expressing the transgenic male-specific TCR are deleted by overnight incubation with either immobilized T3.70 or male DC to investigate the participation of the CD28/B7 pathway in the negative selection of immature thymocytes. Staining with B7Ig established that both immature murine CD4+8+ and mature CD4-8+ thymocytes express a high level of CD28. However, despite the high expression of CD28 on CD4+8+ thymocytes, it was found that deletion of CD4+8+ thymocytes expressing the male-specific TCR by the T3.70 mAb was not inhibited by B7+CHO cells. Furthermore, the deletion of these thymocytes by DC also was not inhibited by CTLA4Ig. These findings provide evidence that although signaling through CD28 can costimulate a primary anti-male response in mature CD4-8+ T cells, the CD28/B7 pathway does not appear to participate in the negative selection of immature CD4+8+ thymocytes.  相似文献   

4.
CTLA4Ig has been successfully used in the clinic for suppression of T cell activation. However, patients treated with CTLA4Ig experienced reduced incidence of tumors than predicted, but the underlying mechanism remains unknown. In this paper, we showed that brief administration of CTLA4Ig significantly reduced tumor metastasis and prolonged the survival of host mice bearing B16 melanoma. Depletion of NK cells prior to CTLA4Ig administration eliminated the CTLA4Ig-mediated anti-tumor activity. CTLA4Ig enhanced NK cell cytotoxicity to tumor cells via up-regulation of NK cell effecter molecules CD107a and perforin in vivo. In addition, we demonstrated that, upon activation, NK cells could significantly increase the expression of CD86 both in vitro and in vivo, and ligation of CD86 with CTLA4Ig significantly increased the ability of NK cells to kill tumor cells. Furthermore, a human NK cell line that expressed high level of CD86 was directly activated by CTLA4Ig so that killing of tumor targets was enhanced; this enhanced killing could be inhibited by blocking CD86. Our findings uncover a novel function of CTLA4Ig in tumor immunity and suggest that CD86 on NK cells is an activating receptor and closely involved in the CTLA4Ig-mediated anti-tumor response.  相似文献   

5.
Blockade of the CD28/B7 T cell costimulatory pathway prolongs allograft survival and induces tolerance in some animal models. We analyzed the efficacy of a CTLA4Ig-expressing adenovirus in preventing cardiac allorejection in rats, the mechanisms underlying heart transplant acceptance, and whether the effects of CTLA4Ig were restricted to the graft microenvironment or were systemic. CTLA4Ig gene transfer into the myocardium allowed indefinite graft survival (>100 days vs 9 +/- 1 days for controls) in 90% of cases, whereas CTLA4Ig protein injected systemically only prolonged cardiac allograft survival (by up to 22 days). CTLA4Ig could be detected in the graft and in the serum for at least 1 year after gene transfer. CTLA4Ig gene transfer induced local intragraft immunomodulation at day 5 after transplantation, as shown by decreased expression of the IL-2R and MHC II Ags; decreased levels of mRNA encoding for IFN-gamma, inducible NO synthase, and TGF-beta; and inhibited proliferative responses of graft-infiltrating cells. Systemic immune responses were also down-modulated, as shown by the suppression of Ab production against donor alloantigens and cognate Ags, up to at least 120 days after gene transfer. Alloantigenic and mitogenic proliferative responses of graft-infiltrating cells and total splenocytes were inhibited and were not reversed by IL-2. In contrast, lymph node cells and T cells purified from splenocytes showed normal proliferation. Recipients of long-term grafts treated with adenovirus coding for CTLA4Ig showed organ and donor-specific tolerance. These data show that expression of CTLA4Ig was high and long lasting after adenovirus-mediated gene transfer. This expression resulted in down-modulation of responses against cognate Ags, efficient suppression of local and systemic allograft immune responses, and ultimate induction of donor-specific tolerance.  相似文献   

6.
Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway   总被引:2,自引:0,他引:2  
The CD28/B7 costimulatory pathway is generally considered dispensable for memory T cell responses, largely based on in vitro studies demonstrating memory T cell activation in the absence of CD28 engagement by B7 ligands. However, the susceptibility of memory CD4 T cells, including central (CD62L(high)) and effector memory (T(EM); CD62L(low)) subsets, to inhibition of CD28-derived costimulation has not been closely examined. In this study, we demonstrate that inhibition of CD28/B7 costimulation with the B7-binding fusion molecule CTLA4Ig has profound and specific effects on secondary responses mediated by memory CD4 T cells generated by priming with Ag or infection with influenza virus. In vitro, CTLA4Ig substantially inhibits IL-2, but not IFN-gamma production from heterogeneous memory CD4 T cells specific for influenza hemagglutinin or OVA in response to peptide challenge. Moreover, IL-2 production from polyclonal influenza-specific memory CD4 T cells in response to virus challenge was completely abrogated by CTLA4Ig with IFN-gamma production partially inhibited. When administered in vivo, CTLA4Ig significantly blocks Ag-driven memory CD4 T cell proliferation and expansion, without affecting early recall and activation. Importantly, CTLA4Ig treatment in vivo induced a striking shift in the phenotype of the responding population from predominantly T(EM) in control-treated mice to predominantly central memory T cells in CTLA4Ig-treated mice, suggesting biased effects of CTLA4Ig on T(EM) responses. Our results identify a novel role for CD28/B7 as a regulator of memory T cell responses, and have important clinical implications for using CTLA4Ig to abrogate the pathologic consequences of T(EM) cells in autoimmunity and chronic disease.  相似文献   

7.
Human monocyte-derived dendritic cells (DCs) are capable of expressing the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO), which allows them to suppress Ag-driven proliferation of T cells in vitro. In DCs that express IDO, the activity of the enzyme is tightly regulated, with the protein being constitutively expressed, but functional activity requiring an additional set of triggering signals supplied during Ag presentation. We now show that triggering of functional IDO obligately requires ligation of B7-1/B7-2 molecules on the DCs by CTLA4/CD28 expressed on T cells. When this interaction was disrupted, IDO remained in the inactive state, and the DCs were unable to inhibit T cell proliferation. Inhibition could be fully restored by direct Ab-mediated cross-linking of B7-1/B7-2. Although both CD4(+) and CD8(+) T cells were susceptible to inhibition once IDO was induced, the ability to trigger functionally active IDO was strictly confined to the CD4(+) subset. Thus, the ability of CD4(+) T cells to induce IDO activity in DCs allowed the CD4(+) population to dominantly inhibit proliferation of the CD8(+) population via the bridge of a conditioned DC. We hypothesize that IDO activation via engagement of B7-1/B7-2 molecules on DCs, specifically, engagement by CTLA4 expressed on regulatory CD4(+) T cells, may function as a physiologic regulator of T cell responses in vivo.  相似文献   

8.
9.
Hypersensitivity pneumonitis (HP) is characterized by an influx of activated T cells in the lungs. The CD28/B7 system provides costimulatory signals essential for complete T cell activation and differentiation. We have previously demonstrated that alveolar macrophages from patients with HP have an up-regulated expression of B7 molecules. In the present study, we investigated the effect of i. p. administration of CTLA4-Ig, a CD28/B7 antagonist, on the lung inflammation of mice inoculated with Saccharoplyspora rectivirgula (SR), a major causative agent of HP. Five groups of C57BL/6 mice were intranasally instilled with SR or saline for 3 consecutive days per wk during 3 wk. CTLA4-Ig was administered starting either after 1 wk of SR challenge or 6 h before the first antigenic exposure and continued during the whole period of sensitization. A control-IgG was given similarly during the 3 wk of SR exposure. The groups included: 1, saline; 2, SR; 3, SR + control-Ig; 4, SR + CTLA4-Ig for the last 2 wk; and 5, SR + CTLA4-Ig for 3 wk. CTLA4-Ig treatment markedly decreased lung inflammation as shown by significantly fewer inflammatory cells in the bronchoalveolar lavage and in lung tissue and reduced SR-specific serum and bronchoalveolar lavage Ig levels. Production of IL-4, IL-10, and IFN-gamma by IL-2-stimulated pulmonary T cells was also decreased by CTLA4-Ig. Administration of CTLA4-Ig did not affect the SR-induced up-regulation of B7-2 expression. These results show that blockade of CD28/B7 interactions by CTLA4-Ig inhibits SR-induced lung inflammation and immune response to SR Ag in mice and may provide a novel approach in the treatment of HP.  相似文献   

10.
CD28, cytotoxic T-lymphocyte associated antigen 4 (CTLA4), inducible costimulator (ICOS) and programmed cell death 1 are closely-linked genes located on chromosome 2q and encode co-stimulatory molecules, which are T-cell activity regulators. The principal assignment of T-cell mediated immune response in allograft rejection is an interesting topic of multiple studies. Although the variation in these genes may influence the graft survival and the amount of immunosuppression needed, the studies so far have been restricted solely to the CTLA4 gene. In 145 patients who underwent liver allograft transplantation, 10 single nucleotide polymorphisms of CD28, CTLA4, ICOS, and PD.1 genes were defined. To distinguish the polymorphisms of all 10 SNPs, PCR-RFLP method was used and according to the standard criteria, acute rejection episodes were determined. CTLA4-1661, AA genotype was significantly more frequent in the patients with acute rejection and AG genotype was significantly more frequent in the patients without rejection. Frequencies of CTLA4+49 AG A allele and CTLA4-1661AG A allele were significantly higher than those of CTLA4+49 AG and CTLA4-1661AG, G allele in the patients with acute rejection. ICOS+693, GG genotype and G allele were significantly less frequent in the patients with acute rejection and CD28 CT genotype was significantly more in patients with acute rejection. The present results demonstrate that potentially functional genetic variation in T-cell co-stimulatory molecules including ICOS, CTLA4 and CD28 can influence liver transplant outcome.  相似文献   

11.
The CD28 costimulation at TCR signaling plays a pivotal role in the regulation of the T cell response. To elucidate the role of T cells in periodontal disease, a system of cell transfer with TCR/CD28-dependent Th1 or Th2 clones was developed in rats. Gingival injection of specific Ag, Actinobacillus actinomycetemcomitans 29-kDa outer membrane protein, and LPS could induce local bone resorption 10 days after the transfer of Ag-specific Th1 clone cells, but not after transfer of Th2 clone cells. Interestingly, the presence of LPS was required not only for the induction of bone resorption but also for Ag-specific IgG2a production. LPS injection elicited the induction of expression of both B7-1 and B7-2 expression on gingival macrophages, which otherwise expressed only MHC class II when animals were injected with Ag alone. The expression of B7 molecules was observed for up to 3 days, which corresponded to the duration of retention of T clone cells in gingival tissues. Either local or systemic administration of CTLA4Ig, a functional antagonist of CD28 binding to B7, could abrogate the bone resorption induced by Th1 clone cells combined with gingival challenge with both Ag and LPS. These results suggest that local Ag-specific activation of Th1-type T cells by B7 costimulation appeared to trigger inflammatory bone resorption, whereas inhibition of B7 expression by CTLA4Ig might be a therapeutic approach for intervention with inflammatory bone resorption.  相似文献   

12.
The effect of blocking the CD28/B7 costimulatory pathway on intestinal allograft rejection was examined in mice. Murine CTLA4Ig failed to prevent the rejection of allografts transplanted into wild-type or CD4 knockout (KO) mice but did inhibit allograft rejection by CD8 KO recipients. This effect was associated with decreased intragraft mRNA for IFN-gamma and TNF-alpha and increased mRNA for IL-4 and IL-5. This altered pattern of cytokine production was not observed in allografts from murine CTLA4Ig-treated CD4 KO mice. These data demonstrate that blockade of the CD28/B7 pathway has different effects on intestinal allograft rejection mediated by CD4+ and CD8+ T cells and suggest that these T cell subsets have different costimulatory requirements in vivo. The results also suggest that the inhibition of CD4+ T cell-mediated allograft rejection by CTLA4Ig may be related to down-regulation of Th1 cytokines and/or up-regulation of Th2 cytokines.  相似文献   

13.
CD28-specific antibody prevents graft-versus-host disease in mice   总被引:16,自引:0,他引:16  
The costimulatory molecules B7-1 and B7-2 regulate T cell activation by delivering activation signals through CD28 and inhibitory signals through CTLA4. Graft-vs-host disease (GVHD) is caused by activated donor T cells. Previously, we showed that CD28-deficient donor T cells induced less-severe GVHD than wild-type donor T cells, suggesting that CD28 signals exacerbate GVHD. In this paper we demonstrate that CTLA4 signals attenuate the severity of GVHD. Targeting the CD28 receptor with a specific mAb modulates the receptor in vivo, inhibits donor T cell expansion, and prevents GVHD. CTLA4 signaling was necessary for this effect because treatment with a soluble ligand that blocks binding of B7 to both CD28 and CTLA4 did not prevent GVHD as effectively as anti-CD28 mAb. These results support the current model of T cell costimulation in which CD28 signals amplify GVHD while CTLA4 signals inhibit GVHD, providing evidence that selective targeting of CD28 might be a better therapeutic strategy for inducing immunological tolerance than blocking the ligands for both CD28 and CTLA4.  相似文献   

14.
15.
The cytotoxic T-lymphocyte antigen 4 (CTLA4) is an important modifier of T-cell activation with down-regulatory properties upon B7 engagement. An allelic polymorphism in exon 1 of the CTLA4 gene coding for the peptide leader sequence of CTLA4 was recently described. This polymorphism was detected in association with several autoimmune diseases. In this study, we investigated the functional impact of the CTLA4 exon 1 +49 A/G dimorphism on T-cell activation and cellular localization. We examined the T-cell response from healthy donors either homozygous for A or G at position +49 of the exon 1. Under suboptimal stimulation conditions we found a greater proliferative response of cells from donors homozygous for G at position +49. FACS analysis of CTLA4 expression revealed a reduced up-regulation of CTLA4 from G/G donors upon T-cell activation, if compared with wild-type cells. Intracellular CTLA4 distribution demonstrated qualitatively different staining patterns between the two genotypes as determined using confocal fluorescence microscopy. Our results suggest that the G allele at position +49 of exon 1 affects the CTLA4-driven down-regulation of T-cell activation and may be an important factor in the pathogenesis of autoimmune diseases.  相似文献   

16.
The aim of this study was to evaluate whether tumor cells from patients with multiple myeloma activate allogeneic and autologous T cells. Results showed that myeloma cells expressed few B7-2 and no B7-1 in six cell lines and primary cells from 11 patients. They expressed substantial levels of HLA class I, CD40, and a set of adhesion molecules. In accordance with the low density of B7 molecules on these cells, they were poor allogeneic CD8+ T cell stimulators. Neither IFN-gamma plus TNF-alpha nor CD40 stimulation significantly induced B7-1 or up-regulated B7-2 on human myeloma cell line or primary myeloma cells from six of seven patients. However, such induction was found on autologous bone-marrow nontumoral cells and on autologous dendritic cells following CD40 stimulation. High B7-1 expression was stably obtained on human myeloma cell line using transduction with a B7-1 retrovirus, enabling these cells to stimulate allogeneic CD8+, though not CD4+, T cell proliferation. For one patient with advanced disease, B7-1 gene transfer made it possible to amplify autologous cytotoxic T cells that killed autologous myeloma cells in an HLA class I-restricted manner, but not autologous PHA blasts. These results suggest that B7-1 gene transfer could be a promising immunotherapeutic approach in multiple myeloma.  相似文献   

17.
Costimulatory blockade of CD28-B7 interaction with CTLA4Ig is a well-established strategy to induce transplantation tolerance. Although previous in vitro studies suggest that CTLA4Ig upregulates expression of the immunoregulatory enzyme IDO in dendritic cells, the relationship of CTLA4Ig and IDO in in vivo organ transplantation remains unclear. In this study, we studied whether concerted immunomodulation in vivo by CTLA4Ig depends on IDO. C57BL/6 recipients receiving a fully MHC-mismatched BALB/c heart graft treated with CTLA4Ig + donor-specific transfusion showed indefinite graft survival (>100 d) without signs of chronic rejection or donor specific Ab formation. Recipients with long-term surviving grafts had significantly higher systemic IDO activity as compared with rejectors, which markedly correlated with intragraft IDO and Foxp3 levels. IDO inhibition with 1-methyl-dl-tryptophan, either at transplant or at postoperative day 50, abrogated CTLA4Ig + DST-induced long-term graft survival. Importantly, IDO1 knockout recipients experienced acute rejection and graft survival comparable to controls. In addition, αCD25 mAb-mediated depletion of regulatory T cells (Tregs) resulted in decreased IDO activity and again prevented CTLA4Ig + DST induced indefinite graft survival. Our results suggest that CTLA4Ig-induced tolerance to murine cardiac allografts is critically dependent on synergistic cross-linked interplay of IDO and Tregs. These results have important implications for the clinical development of this costimulatory blocker.  相似文献   

18.
19.
《Seminars in Virology》1996,7(2):103-111
Costimulation plays a pivotal role in T-cell activation, since engagement of the T-cell receptor in the absence of costimulatory signals can lead to T-cell anergy. The B7-CD28/CTLA4 costimulatory pathway can provide a potent costimulatory signal. This article focuses on the B7-CD28/CTLA4 pathway, reviewing aspects of costimulation relevant to the development of anti-viral immune responses and summarizing vaccination strategies employing costimulatory molecules. In addition, this article discusses the importance of regulated expression of costimulatory molecules and describes how viruses can modulate the expression of costimulatory molecules, which may contribute to immune dysfunction.  相似文献   

20.
The present experiments were performed to study whether the genes responsible for the expression of T-cell idiotypes and allotypes could be mapped in relation to immunoglobulin (Ig) heavy chain V- and C-genes. Use was made of our antiserum 5936, which detects idiotypes in B6 anti-B10.BR sera and on Lyt-1+, 2.3B6 anti-B10.BR T-cell populations, and antiserum 6036, which detects allotypes on Lyt-1+, 2.3B6 T cells, but which does not react against Ig. The reactivity of these antisera with T cells from (B6 x C3H.OH) x C3H.OH backcross mice and CBA-allotype congenic B6 mice was investigated because 5936 idiotypes and 6036 allotypes appeared to be associated with Igh-1 b genes (B6) and not with Igh-1 b genes (C3H.OH, CBA). Our results will show, first, that 5936 idiotypes on Lyt-1+, 2.3B6 anti-B10.BR T cells are synthesized by genes linked to Igh-1 b allotype genes and they are situated either within Ig heavy chain V-genes or centromeric to them. Second, our results will show that 6036 allotypes on Lyt-1+, 2.3B6 T cells are produced by genes also linked to Igh-1 b -allotype genes, and the 6036 allotype genes are situated between Ig-VH and prealbumin genes.Abbreviations used in this paper BCGF B cell growth factor - B6 C57B1/6 - CH constant region of immunoglobulin heavy chain - Con A concanavalin A - FCS fetal calf serum - Id idiotype - Ig immunoglobulin - LPS lipopolysaccharide - M mouse - MHC major histocompatibility complex - MLC mixed lymphocyte culture - MRBC mouse red blood cells - NMS normal mouse serum - NP nitrophenacetyl - NRS normal rabbit serum - PFC plaque forming cell - R rabbit - Tcf T cell factor - Tcr T cell receptor - TNP Trinitrophenol - VH variable region of Ig heavy chain Definitions of terms used in this paper: T-cell idiotypes, structures on T-cell membranes or released T-cell molecules detected by an anti-idiotypic antiserum (5936) produced against specific immunoglobulin idiotypes. The 5936 T-cell idiotypes are related to the specific binding of IAk gene products by certain Igh-1b T cells. T cell allotypes, structures on T-cell membranes or released T-cell molecules detected by an antiserum (6036) produced against 5936 idiotype-bearing T-cell molecules. The 6036 T-cell allotypes are related to the binding by Igh-1b T cells of all Ia gene products tested, and they are non-cross-reactive with immunoglobulin allotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号