首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yeast HAL1 gene improves salt tolerance of transgenic tomato   总被引:28,自引:0,他引:28  
Overexpression of the HAL1 gene in yeast has a positive effect on salt tolerance by maintaining a high internal K(+) concentration and decreasing intracellular Na(+) during salt stress. In the present work, the yeast gene HAL1 was introduced into tomato (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens-mediated transformation. A sample of primary transformants was self-pollinated, and progeny from both transformed and non-transformed plants (controls) were evaluated for salt tolerance in vitro and in vivo. Results from different tests indicated a higher level of salt tolerance in the progeny of two different transgenic plants bearing four copies or one copy of the HAL1 gene. In addition, measurement of the intracellular K(+) to Na(+) ratios showed that transgenic lines were able to retain more K(+) than the control under salt stress. Although plants and yeast cannot be compared in an absolute sense, these results indicate that the mechanism controlling the positive effect of the HAL1 gene on salt tolerance may be similar in transgenic plants and yeast.  相似文献   

2.
转HAL1基因番茄的耐盐性   总被引:18,自引:0,他引:18  
利用农杆菌介导的叶盘法,把HAL1 基因转入番茄,Southern杂交检测得到转基因植株.耐盐实验表明, T1代转基因番茄在150 mmol/L的NaCl胁迫下仍有43%的发芽率,200 mmol/L的NaCl胁迫下发芽率为6%,而对照种子在100和150 mmol/L的NaCl胁迫下发芽率分别为11.0%和0.转基因番茄的电解质相对外渗率小于对照,而根冠比和叶绿素含量大于对照,转HAL1基因显著提高了番茄的耐盐性.盐胁迫下Na 、K 的累积状况表明,转基因番茄根、茎、叶的K /Na 均有所提高,根系的SK/Na增大,茎、叶的RSK/Na和RLK/Na减小,说明根系对K /Na 离子的选择吸收和运输能力加强.不但选择吸收K /Na ,而且表现出整株水平上的有利于耐盐的K /Na 区域化分配.  相似文献   

3.
Tomato cv Rio Grande plants were transformed with yeast halotolerance genes (HAL I or HAL II) using pPM7HAL I or pJRM16HAL II, with p35GUSINT as control. Transformation efficiency varied in the three constructs, with highest transformation found with p35GUSINT. Final selection of the transgenic plants was made on the basis of PCR. Transgene integration and copy number were assessed by Southern hybridisation. The primary transformants were allowed to self-pollinate and the expected Mendelian ratios were studied in second-generation progeny. Five independent homozygous lines each of HAL I and HAL II, as well as the control, were characterised to study inter-transformant expression variability. The transformants showed considerable variability in expression of the respective genes, as shown by salt tolerance assays, chlorophyll content and peroxidase activity. The transgene expression in transgenic lines was analysed by semi-quantitative RT-PCR. In response to different salt concentrations, transgenic plants over-expressing HAL I and HAL II had significantly (α=0.05) better performance than the control This study presents the comparative responses of the three constructs under the same transformation conditions and suggests possible mechanisms governed by yeast HAL I and HAL II genes, which seem to work in a coordinated manner by relatively decreasing osmotic and oxidative shock at different rates. Our results suggest that the yeast HAL I increases K(+) /Na(+) selectivity and has a more functional role than HAL II in improving salt tolerance of the tomato cv Rio Grande grown in Pakistan.  相似文献   

4.
HAL1基因转化番茄及耐盐转基因番茄的鉴定   总被引:27,自引:0,他引:27  
采用PCR方法 ,从啤酒酵母中扩增得到可调节植物细胞离子均衡的HAL1基因 ,克隆后序列分析表明 :其开放读码框全长 879bp ,编码一个 294个氨基酸的多肽 (分子量32kD)。构建含HAL1和NptⅡ嵌合基因的植物表达框架pRH ,三亲杂交后经农杆菌介导的叶圆盘法转化番茄 (中蔬 5号 ) ,在含卡那霉素的培养基上进行转化体的筛选。转基因番茄的PCR、Southern杂交、RT PCR检测以及鲜重、干重和Na+ 、K+ 含量的测定表明 :HAL1基因确已整合到一些转基因番茄的基因组中 ;且转基因植株的耐盐性提高。  相似文献   

5.
An optimised Agrobacterium-mediated gene transfer protocol was developed in order to obtain watermelon transgenic plants [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Transformation efficiencies ranged from 2.8% to 5.3%, depending on the cultivar. The method was applied to obtain genetically engineered watermelon plants expressing the Saccharomyces cerevisiae HAL1 gene related to salt tolerance. In order to enhance its constitutive expression in plants, the HAL1 gene was cloned in a pBiN19 plasmid under control of the 35S promoter with a double enhancer sequence from the cauliflower mosaic virus and the RNA4 leader sequence of the alfalfa mosaic virus. This vector was introduced into Agrobacterium tumefaciens strain LBA4404 for further inoculation of watermelon half-cotyledon explants. The introduction of both the neomycin phosphotransferase II and HAL1 genes was assessed in primary transformants (TG1) by polymerase chain reaction analysis and Southern hybridisation. The expression of the HAL1 gene was determined by Northern analysis, and the diploid level of transgenic plants was confirmed by flow cytometry. The presence of the selectable marker gene in the expected Mendelian ratios was demonstrated in TG2 progenies. The TG2 kanamycin-resistant plantlets elongated better and produced new roots and leaves in culture media supplemented with NaCl compared with the control. Salt tolerance was confirmed in a semi-hydroponic system (EC=6 dS m(-1)) on the basis of the higher growth performance of homozygous TG3 lines with respect to their respective azygous control lines without the transgene. The halotolerance observed confirmed the inheritance of the trait and supports the potential usefulness of the HAL1 gene of S. cerevisiae as a molecular tool for genetic engineering of salt-stress protection in other crop species.  相似文献   

6.
Overexpression of SOD2 increases salt tolerance of Arabidopsis   总被引:7,自引:0,他引:7       下载免费PDF全文
Gao X  Ren Z  Zhao Y  Zhang H 《Plant physiology》2003,133(4):1873-1881
The yeast (Schizosaccharomyces pombe) SOD2 (Sodium2) gene was introduced into Arabidopsis under the control of the cauliflower mosaic virus 35S promoter. Transformants were selected for their ability to grow on medium containing kanamycin. Southern- and northern-blot analyses confirmed that SOD2 was transferred into the Arabidopsis genome. There were no obvious morphological or developmental differences between the transgenic and wild-type (wt) plants. Several transgenic homozygous lines and wt plants (control) were evaluated for salt tolerance and gene expression. Overexpression of SOD2 in Arabidopsis improved seed germination and seedling salt tolerance. Analysis of Na+ and K+ contents of the symplast and apoplast in the parenchyma cells of the root cortex and mesophyll cells in the spongy tissue of the leaf showed that transgenic lines accumulated less Na+ and more K+ in the symplast than the wt plants did. The photosynthetic rate and the fresh weight of the transgenic lines were distinctly higher than that of wt plants after NaCl treatment. Results from different tests indicated that the expression of the SOD2 gene promoted a higher level of salt tolerance in vivo in transgenic Arabidopsis plants.  相似文献   

7.
The yeast HAL1 gene facilitates K+/Na+ selectivity and salt tolerance of cells. Ectopic expression of HAL1 in transgenic tomato (Lycopersicon esculentum Mill.) plants minimized the reduction in fruit production caused by salt stress. Maintenance of fruit production by transgenic plants was correlated with enhanced growth under salt stress of calli derived from the plants. The HAL1 transgene enhanced water and K+ contents in both leaf calli and leaves in the presence of salt, which indicates that HAL1 functions in plants using a similar mechanism to that in yeast, namely by facilitating K+/Na+ selectivity under salt stress.  相似文献   

8.
We examined the function of the rice (Oryza sativa L.) antiporter-regulating protein OsARP by overexpressing it in tobacco (Nicotiana tabacum L.). In public databases, this protein was annotated as a putative Os02g0465900 protein of rice. The OsARP gene was introduced into tobacco under the control of the cauliflower mosaic virus 35S promoter. The transformants were selected for their ability to grow on medium containing kanamycin. Incorporation of the transgene in the genome of tobacco was confirmed by PCR, and its expression was confirmed by Western blot analysis. Transgenic plants had better growth and vigor than non-transgenic plants under salt stress in vitro. Overexpression of OsARP in transgenic tobacco plants resulted in salt tolerance, and the plants had a higher rate of photosynthesis and effective PSII photon yield when compared with the wild type. The OsARP protein was localized in the tonoplast of rice plants. Transgenic plants accumulated more Na+ in their leaf tissue than did wild-type plants. It is conceivable that the toxic effect of Na+ in the cytosol might be reduced by sequestration into vacuoles. The rate of water loss was higher in the wild type than in transgenic plants under salt stress. Increased vacuolar solute accumulation and water retention could confer salt tolerance in transgenic plants. Tonoplast vesicles isolated from OsARP transgenic plants showed Na+/H+ exchange rates 3-fold higher than those of wild-type plants. These results suggest that OsARP on the tonoplasts plays an important role in compartmentation of Na+ into vacuoles. We suggest that OsARP is a new type of protein participating in Na+ uptake in vacuoles.  相似文献   

9.
转AtNHX1基因玉米的产生及其耐盐性分析   总被引:12,自引:0,他引:12  
以玉米(ZeamaysL.)骨干自交系DH4866、齐319和鲁原16106的胚性愈伤组织为材料,采用农杆菌介导法将AtNHX1和hpt基因转入玉米培养细胞,经筛选获得了抗潮霉素的愈伤组织并再生植株。经PCR检测和Southernblot验证,确定了22.8%的再生植株为转基因植株。农杆菌液浓度、愈伤组织基因型及共培养时间对转化率均有明显影响。外源基因在转基因植株后代中的分离呈多样性,在部分株系中表现出孟德尔遗传规律。耐盐筛选表明,一些转基因植株及其后代具有很好的耐盐性,部分株系可在0.8%-1.0%NaCl溶液浇灌下萌发和生长。Northern杂交表明,植株耐盐性提高与AtNHX1基因的转录水平相一致。  相似文献   

10.
11.
Abiotic stresses, especially salinity and drought, are major limiting factors for plant growth and crop productivity. In an attempt to develop salt and drought tolerant tomato, a DNA cassette containing tobacco osmotin gene driven by a cauliflower mosaic virus 35S promoter was transferred to tomato (Solanum lycopersicum) via Agrobacterium-mediated transformation. Putative T0 transgenic plants were screened by PCR analysis. The selected transformants were evaluated for salt and drought stress tolerance by physiological analysis at T1 and T2 generations. Integration of the osmotin gene in transgenic T1 plants was verified by Southern blot hybridization. Transgenic expression of the osmotin gene was verified by RT-PCR and northern blotting in T1 plants. T1 progenies from both transformed and untransformed plants were tested for salt and drought tolerance by subjecting them to different levels of NaCl stress and by withholding water supply, respectively. Results from different physiological tests demonstrated enhanced tolerance to salt and drought stresses in transgenic plants harboring the osmotin gene as compared to the wild-type plants. The transgenic lines showed significantly higher relative water content, chlorophyll content, proline content, and leaf expansion than the wild-type plants under stress conditions. The present investigation clearly shows that overexpression of osmotin gene enhances salt and drought stress tolerance in transgenic tomato plants.  相似文献   

12.
The salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na(+)/H(+) antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na(+) transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na(+) transporters, SOS1 was able to reduce Na(+) accumulation and improve salt tolerance of the mutant cells. Confocal imaging of a SOS1-green fluorescent protein fusion protein in transgenic Arabidopsis plants indicated that SOS1 is localized in the plasma membrane. Analysis of SOS1 promoter-beta-glucuronidase transgenic Arabidopsis plants revealed preferential expression of SOS1 in epidermal cells at the root tip and in parenchyma cells at the xylem/symplast boundary of roots, stems, and leaves. Under mild salt stress (25 mM NaCl), sos1 mutant shoot accumulated less Na(+) than did the wild-type shoot. However, under severe salt stress (100 mM NaCl), sos1 mutant plants accumulated more Na(+) than did the wild type. There also was greater Na(+) content in the xylem sap of sos1 mutant plants exposed to 100 mM NaCl. These results suggest that SOS1 is critical for controlling long-distance Na(+) transport from root to shoot. We present a model in which SOS1 functions in retrieving Na(+) from the xylem stream under severe salt stress, whereas under mild salt stress it may function in loading Na(+) into the xylem.  相似文献   

13.
以玉米(Zea mays L.)骨干自交系DH4866、齐319和鲁原16106的胚性愈伤组织为材料,采用农杆菌介导法将AtNHX1和hpt因转入玉米培养细胞,经筛选获得了抗潮霉素的愈伤组织并再生植株.经PCR检测和Southernblot验证,确定了22.8%的再生植株为转基因植株.农杆菌液浓度、愈伤组织基因型及共培养时间对转化率均有明显影响.外源基因在转基因植株后代中的分离呈多样性,在部分株系中表现出孟德尔遗传规律.耐盐筛选表明,一些转基因植株及其后代具有很好的耐盐性,部分株系可在0.8%-1.0%NaCl溶液浇灌下萌发和生长.Northern杂交表明,植株耐盐性提高与AtNHX1基因的转录水平相一致.  相似文献   

14.
转OsCDPK7基因水稻的培育与耐盐性分析   总被引:3,自引:1,他引:2  
王镭  才华  柏锡  李丽文  李勇  朱延明 《遗传》2008,30(8):1051-1055
以4℃处理的水稻品种辽盐241植株叶片总RNA为模板, 用基因特异引物通过RT-PCR扩增出1 700 bp的OsCDPK7基因。该基因序列比已报道的基因序列(GenBank登录号:AB042550)缺失了26个氨基酸, 而丝氨酸/苏氨酸蛋白激酶活性中心和钙结合结构域完整, 具备钙依赖的蛋白激酶活性。构建了由组成型启动子E12调控的OsCDPK7基因植物表达载体, 利用农杆菌介导法转化水稻, 经Km筛选及Southern杂交验证, 获得10株转基因植株。耐盐性分析表明:OsCDPK7基因的组成型表达提高了T2代转基因植株的耐盐性, 部分转基因水稻在0.2 mol/L NaCl培养基中能够萌发; 幼苗期水稻经0.4 mol/L NaCl浇灌10 d, 去除胁迫后能恢复正常生长; 而对照在以上情况下均不能萌发和恢复。结果表明, 利用植物信号转导过程中的调控因子能够提高转基因作物的耐盐性。然而, 在不同耐性的转基因植株中, OsCDPK7基因的表达有一定的差异。  相似文献   

15.
The Suaeda salsa glutathione S-transferase gene (GST) was introduced into arabidopsis under the control of the cauliflower mosaic virus 35S promoter. Transformants were selected for their ability to grow on medium containing kanamycin. Southern and northern blot analyses confirmed that GST was transferred into the arabidopsis genome, and the GST and GPX activities in transgenic plants (GT) were much higher than in wild-type plants (WT). There were no obvious morphological or developmental differences between transgenic and wild-type plants. One transgenic homozygous line (GT6–8) and WT plants were evaluated for salt tolerance and gene expression. Seed germination and seedling salt tolerance were improved after overexpression of GST in arabidopsis; the photosynthesis rate and the fresh weight of the GT6–8 line were distinctly higher than those of WT plants after NaCl treatment. Glutathione content increased substantially in salt-stressed arabidopsis plants of both genotypes, and the glutathione pool in GT6–8 plants was more oxidized than in WT plants under both control and stressful conditions. The MDA content, an indicator of lipid peroxidation, increased in WT plants but was not affected distinctly in GT6–8 seedlings after NaCl treatment. Results from different tests indicated that the expression of the GST gene promoted a higher level of salt tolerance in vivo in transgenic arabidopsis plants.  相似文献   

16.
AtNHX1基因对草木樨状黄芪的转化和耐盐性表达研究   总被引:5,自引:0,他引:5  
应用RT-PCR技术从100mmol/LNaCl胁迫处理的拟南芥幼中克隆得到编码液泡膜Na /H 逆向转运蛋白的AtNHX1基因cDNA 编码ORF.并在该ORF上游分别插入CaMV 35启动子和TMV RNA5'UTR的Ω片段,而在下游插入NOS polyA构建真核表达盒,进而将该表达盒插入双元植物表达栽体pNT质粒的T-DNA区构建了携带AtNHX1 基因的植物表达载体质粒pNT-AtNHX1.将pNT-AtNHX1 导入农杆菌LBA4404,用农杆菌介导法将AtNHX1 基因导入豆科牧草草木樨状黄芪中,共获得103株Kan抗性再生植株.通过对农杆菌茵液浓度、侵染时间和乙酰丁香酮浓度等影响转化效率的因素进行优化,初步建立了稳定的草木樨状黄芪农杆菌转化体系.经过PCR检测、Southern杂交和RT-PCR检测表明,AtNHX1 基因已被成功整合到草木樨状黄芪基因组中,并且能够正常转录.野生型和转基因株系诱发的愈伤组织进行耐盐生长实验,结果显示相同盐胁迫条件下,转基因愈伤组织的相对生长率显著高于野生型愈伤组织.施加梯度NaCl胁迫后,植株叶片K ,Na 含量和叶片相对电导率测定结果显示,转基因植物叶片比野生型积累更多的Na 和K ,维持较高的K /Na ;转基因株系叶片相对电导率显著低于野生型.上述结果表明,AtNHX1 基因的导入和表达在提高草木樨状黄芪耐盐性的同时减轻了盐胁迫对植物细胞膜的伤害.关键词: AtNHX1 草木樨状黄芪农杆菌遗传转化耐盐性.  相似文献   

17.
18.
An Agrobacterium-mediated gene transfer method for production of transgenic melon plants has been optimized. The HAL1 gene, an halotolerance gene isolated from yeast, was inserted in a chimaeric construct and joined to two marker genes: a selectable-neomycin phosphotransferase-II (nptII)-, and a reporter--glucuronidase (gus)-. The entire construct was introduced into commercial cultivars of melon. Transformants were selected for their ability to grow on media containing kanamycin. Transformation was confirmed by GUS assays, PCR analysis and Southern hybridization. Transformation efficiency depended on the cultivar, selection scheme used and the induction of vir-genes by the addition of acetosyringone during the cocultivation period. The highest transformation frequency, 3% of the total number of explants cocultivated, was obtained with cotyledonary explants of cv. Pharo. Although at a lower frequency (1.3%), we have also succeeded in the transformation of leaf explants. A loss of genetic material was detected in some plants, and results are in accordance with the directional model of T-DNA transfer. In vitro cultured shoots from transgenic populations carrying the HAL1 gene were evaluated for salt tolerance on shoot growth medium containing 10 g l–1 NaCl. Although root and vegetative growth were reduced, transgenic HAL1-positive plants consistently showed a higher level of tolerance than control HAL1-negative plants  相似文献   

19.
The Hal3 protein of Saccharomyces cerevisiae inhibits the activity of PPZ1 type-1 protein phosphatases and functions as a regulator of salt tolerance and cell cycle control. In plants, two HAL3 homologue genes in Arabidopsis thaliana, AtHAL3a and AtHAl3b, have been isolated and the function of AtHAL3a has been investigated through the use of transgenic plants. Expressions of both AtHAL3 genes are induced by salt stress. AtHAL3a overexpressing transgenic plants exhibit improved salt and sorbitol tolerance. In vitro studies have demonstrated that AtHAL3 protein possessed 4'-phosphopantothenoylcysteine decarboxylase activity. This result suggests that the molecular function of plant HAL3 genes is different from that of yeast HAL3. To understand the function of plant HAL3 genes in salt tolerance more clearly, three tobacco HAL3 genes, NtHAL3a, NtHAL3b, and NtHAL3c, from Nicotiana tabacum were identified. NtHAL3 genes were constitutively expressed in all organs and under all conditions of stress examined. Overexpression of NtHAL3a improved salt, osmotic, and lithium tolerance in cultured tobacco cells. NtHAL3 genes could complement the temperature-sensitive mutation in the E. coli dfp gene encoding 4'-phosphopantothenoyl-cysteine decarboxylase in the coenzyme A biosynthetic pathway. Cells overexpressing NtHAL3a had an increased intracellular ratio of proline. Taken together, these results suggest that NtHAL3 proteins are involved in the coenzyme A biosynthetic pathway in tobacco cells.  相似文献   

20.
用外植体一农杆菌共培养法将酵母脯氨酸合成酶基因2(pro 2)导入豆科牧草紫云英,获得转基因植株。Southern blot分析检测到转化植株基因组中存在外源DNA的同源顺序,证明酵母pro 2基因已整合到紫云英细胞基因组中。转化植株具有强的NPT Ⅱ酶活性,而对照植株呈阴性反应。在含0.5%NaCl的培养基上,紫云英植株内游离脯氨酸含量增高,一些转化植株叶片内游离脯氨酸含量显著高于对照,而且耐盐性有所提高。转化植株移栽到土壤中开花结实,收获到R_1代种子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号