首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
<正> 甲型血友病是最常见的遗传性凝血疾病,是由于凝血因子Ⅷ(FVⅢ)基因缺陷所致。目前对此病尚无满意的治疗方法。利用DNA分析技术进行甲型血友病基因检测与产前基因诊断对开展优生优育有重要的实际应用价值。由于FⅧ基因组织结构庞大,分子病理改变复杂,目前多采用DNA限制酶片段长度多态性(RFLPs)为遗传标志对有缺陷的FⅧ基因进行连锁分析。St 14(DXS52)是人X染色体长臂远端的一段基因外DNA序列,与FⅧ基因紧密连锁。国外已将St14/Taq Ⅰ RFLPs用于甲型血友病基因携带者的检测,但尚未见到用于产前基因诊断的报道。我们利用引进的St14片段为探针,采用简化的低脂奶粉杂交体系和DNA凝胶原  相似文献   

2.
胎儿游离DNA在母体外周血血浆中的发现颠覆性地改变现有的无创产前检测方法,例如基于孕妇外周血血浆DNA对胎儿染色体异常的无创检测在全球范围内快速得到了认可和广泛应用。受到胎儿游离DNA研究成果的鼓舞,科学家也陆续展开了关于孕妇外周血中胎儿游离RNA的研究。现将集中讨论血浆RNA的特性及其潜在的应用。  相似文献   

3.
用DNA扩增法检测镰状细胞基因   总被引:1,自引:1,他引:0  
黄淑帧  王启松 《遗传学报》1989,16(6):475-482
本文报道应用DNA扩增技术对国内首例镰状细胞特征患者(Hb s杂合子)进行基因诊断。方法是从患者干血标本中微量抽提基因组DNA,通过聚合酶链反应(PCR)扩增其β珠蛋白基因,经限制性内切酶MstⅡ消化后作电泳分析直接检测Hb S基因。本文介绍的DNA诊断技术快速、灵敏、简便,它不需要放射性同位素标记的探针,可以采用干血抽提的DNA,因此,对遗传病基因诊断和携带者的筛查具有重要价值。  相似文献   

4.
改良的PEP方法在无创性产前基因诊断中的应用   总被引:7,自引:2,他引:5  
王敏  金春莲  林长坤  王雁  孙开来  武盈玉 《遗传》2001,23(3):195-198
应用显微操作技术获取孕妇外周血中的单个有核红细胞,改良的PEP方法扩增单个有核红细胞的全基因组DNA;在此基础上,应用荧光标记聚合酶链反应扩增9个微卫星片段,进行基因型分析判定单个有核红细胞来源。综合性别和DMD基因内的数个STR位点连锁分析进行DMD基因诊断,应用PCR-STR连锁分析进行PKU基因诊断。结果显示,对10例DMD高危胎儿中的6例成功地进行了无创性产前基因诊断。同时对1例PKU也成功地进行了无创性产前基因诊断。改良的PEP方法扩增单个细胞的全基因组可以满足基因诊断的要求,是无创性产前基因诊断中一种极有价值的全基因组扩增的方法。 Abstract:We investigated the feasibility of using improved primer extension preamplificat ion method to diagnose DMD and PKU. The fetal nucleated red blood cells from the peripheral blood of pregnant women were detected and individually retrieved into glass capillary pipettes using a micromanipulator under microscopic observation. The whole genome of a single cell was amplified by improved primer extension preamplification (PEP).Genotypes were analyzed by amplifying the 9 STR fragments using fluorescence?PCR technique and NRBC's(nucleated red blood cell) origin w as determined.We diagnosed DMD prenatally using sex determination and linkage an alysis of several STR sites of dystrophin,and we diagnosed PKU prenatally using PCR?STR linkage analysis.6 of 10 potential DMD patients were diagnosed,includin g 1 male fetal patient,1 potential PKU patient was also diagnosed.The improved P EP method is a very valuable method of amplifying the whole genome of single cel ls,and the products of amplification are enough to the requirements of DNA in no n-invasive prenatal diagnosis.  相似文献   

5.
假肥大性肌营养不良(Duchenne/Becker muscular dystrophy, DMD/BMD)是一种由于DMD基因突变导致的X连锁隐性致死性遗传病。目前没有有效的治疗方法。为建立一种既可以对携带者进行检测又可以进行产前基因诊断的方法, 文章联合应用多重连接探针扩增技术(Multiplex ligation-dependent probe amplification, MLPA)和短串联重复序列(Short tandem repeats , STR)为遗传标记连锁分析的方法对26例有高风险再生育患儿的假肥大性肌营养不良家系的孕妇通过羊水穿刺进行产前基因诊断。26例进行产前基因诊断的羊水标本中有7例诊断为男性患儿, 4例诊断为女性携带者。MLPA可以作为筛查DMD基因缺失和重复突变的首选方法。联合应用MLPA和STR连锁分析, 可以提高假肥大性肌营养不良的产前基因诊断率。  相似文献   

6.
外周血循环RNA、微小RNA与肿瘤诊断*   总被引:1,自引:0,他引:1  
循环核酸(circulating nucleic acid, CNA)是指存在于血液(血清或血浆)等体液中的细胞外游离DNA和RNA,与生理和病理状态下的细胞代谢密切相关,循环DNA和RNA水平的检测及其在基因诊断等方面的应用对于恶性肿瘤等疾病的诊断和监测具有十分重要的意义。近期人们在进行循环DNA、RNA分子检测的同时,在循环微小RNA(microRNA, miRNA)方面也做了许多的工作,研究结果使得与肿瘤相关的核酸分子检测这一领域变的更加让人振奋。在血液中检出肿瘤特异性的miRNA并将其作为肿瘤的生物学标志对于早期诊断肿瘤具有至关重要的意义。  相似文献   

7.
目的:探讨无创DNA检测技术在孕妇产前临床检测中的应用。方法:对276例孕妇进行胎儿无创DNA产前检测,包括高龄(年龄≥35岁)、唐筛结果为高风险或单项指标异常、超声软指标异常者。结果:276例中,267例检测为低风险,9例检测为高风险。高风险包括5例提示21-三体综合征、2例提示18-三体综合征、1例提示13-三体综合征、1例提示胎儿性染色体DNA含量不足。9例异常者经羊水和脐血穿刺检测证实与无创DNA结果吻合,准确率为100%。结论:无创DNA产前检测针对胎儿21-、18-、13-三体综合征筛查,具有简单安全、可靠等优点,较血清学筛查有着无可比拟的优越性。这项技术大大减少了有创产前诊断人数,将作为一种筛查技术大规模应用于临床,是未来发展的趋势。  相似文献   

8.
遗传病的基因诊断是本世纪70年代末在重组DNA技术的基础上迅速发展起来的一项高技术,它的问世,标志着人们对疾病的认识已从传统的表型诊断步入基因型诊断或称逆诊断(reverse diagnosis)的新阶段,成为现代分子生物学和分子遗传学的理论和技术与医学相结合的典范。近十多年来,遗传病的基因诊断在国内外都取得了相当的发展。这不仅表现在基因诊断技术的不断更新,使越来越多的导致遗传病发生的分子缺陷或突变的本质被揭示;而且基因诊断的实用性也不断提高,从而能对有遗传病危险的胎儿在妊娠早期和中期甚  相似文献   

9.
利用放射性同位素标记的基因片段或cDNA探针进行核酸分子杂交是分析基因表达的有效手段。将细胞DNA或RNA样品经琼脂糖凝胶电泳分离后转移到硝酸纤维素膜上,然后与放射性探针杂交,即Southern印迹法和Northern印迹法已被普遍采用,为了简化操作,也常使用(Dot Blot)点印迹法。利用上述技术进行基因或基因产物分析时,首先需要从细胞分离、纯化RNA和DNA。如果需  相似文献   

10.
无创产前筛查(Non-Invasive Prenatal Testing, NIPT)通过检测孕妇外周血中的游离胎儿DNA来筛查胎儿常见非整倍体,已成为产前筛查中重要的一项技术,甚至可作为高龄孕妇初步筛查的首选方式。但因为难免会出现假阴性和假阳性,所以其阴性结果也并不能总是保证胎儿正常。而对于阳性结果,需通过有创产前诊断进行验证。目前,我国临床主要采用的有创产前诊断方法有绒毛活检(Chorionic Villous Sampling, CVS)、羊膜腔穿刺(Amniocentesis, AC)和脐血穿刺。绒毛活检和羊膜腔穿刺术是NIPT阳性结果验证的主要方式。本文主要对造成NIPT假阳性和假阴性结果的原因及其阳性结果的验证进行综述。  相似文献   

11.
Recent advances in fetal nucleic acids in maternal plasma.   总被引:7,自引:0,他引:7  
The discovery of cell-free fetal DNA in maternal plasma in 1997 has opened up new possibilities for noninvasive prenatal diagnosis. Circulating fetal DNA molecules have been detected in maternal plasma from the first trimester onwards and can be robustly detected using a variety of molecular methods. This approach has been used for the prenatal investigation of sex-linked diseases, fetal RhD status, and prenatal exclusion of beta-thalassemia major. Recently, fetal RNA has also been found in maternal plasma. Such fetal RNA has been shown to originate from the placenta and to be remarkably stable. The use of microarray-based approaches has made it feasible to rapidly generate new circulating RNA markers. It is hoped that further developments in this field will make the routine and widespread practice of noninvasive nucleic acid-based prenatal diagnosis for common pregnancy-associated disorders feasible in the near future.  相似文献   

12.
Non-invasive prenatal diagnosis tests based on the analysis of fetal DNA in maternal plasma have potential to be a safer alternative to invasive methods. So far, different studies have shown mainly fetal sex, fetal RhD, and quantitative variations of fetal DNA during gestation with fetal chromosomal anomalies or gestations at risk for preeclampsia. The objective of our research was to evaluate the use of fetal DNA in maternal plasma for clinical application. In our study, we have established the methodology needed for the analysis of fetal DNA. Different methods were used, according to the requirements of the assay. We have used quantitative fluorescent polymerase chain reaction (QF-PCR) to perform fetal sex detection with 90% sensitivity. The same technique permitted the detection of fetal DNA from the 10th week of gestation to hours after delivery. We have successfully carried out the diagnosis of two inherited disorders, cystic fibrosis (conventional PCR and restriction analysis) and Huntington disease (QF-PCR). Ninety percent of the cases studied for fetal RhD by real-time PCR were correctly diagnosed. The detection of fetal DNA sequences is a reality and could reduce the risk of invasive techniques for certain fetal disorders in the near future.  相似文献   

13.
利用孕妇血浆DNA检测胎儿性别的研究   总被引:6,自引:0,他引:6  
本文探讨应用孕妇血浆中游离DNA进行无创性产前性别诊断的可行性。用柱分离法提取73例孕妇血浆中DNA,用巢式PCR技术检测其胎儿SRY基因。 结果73位孕妇血浆DNA含量为0.0062~0.3399μg/μL。巢式PCR检测胎儿SRY基因的灵敏度为97.37%(37/38),假阴性率2.86%(1/35),特异度85.71%(30/35),假阳性率13.16%(5/38),总符合率91.78%(67/73)。采用孕妇血浆胎儿DNA和巢式PCR技术可以快速简便的进行无创性产前性别诊断,诊断结果的准确率为91.8%,对性连锁遗传病的预防具有重要意义。 Abstract:To investigate the feasibility and possibility of application of fetal DNA from maternal plasma for noninvasive prenatal diagnosis of fetal sex,plasma DNAs in blood samples of 73 pregnant women at the gestational period of 26 to 41 weeks were extracted by column separation and nested polymerase chain reaction were employed to amplify the SRY gene.A comparison was made between the amplification results and the real sex of the fetus after their delivery.The concordance rate of SRY gene amplification results of plasma free DNA with real fetal sex was 91.78% (67/73),the sensitivity rate was 97.37% (37/38),and the specific rate was 85.71% (30/35).The cell-free fetal DNA in maternal blood can be one of the valuable material sources for noninvasive prenatal diagnosis and the method of nested PCR could be useful for fetal sex determination.The specific rate of the test was 91.78%.It is of significance to prevent sex-linked inheritant diseases.  相似文献   

14.

AIM:

The presence of circulatory cell-free fetal DNA in maternal plasma has found new applications in non-invasive risk-free prenatal diagnosis.

MATERIALS AND METHODS:

We made use of a size separation approach along with real time polymerase chain reaction (PCR) to evaluate the use of fetal DNA in the detection of the sex of the fetus. Cell-free fetal DNA was isolated from the plasma of 30 women (10–20 weeks gestation) using a size separation approach. We made use of Taq Man Chemistry and real time PCR using primers and probes for GAPDH and SRY.

RESULTS:

Only 24 cases could be studied as there was no amplification in six cases. Fetal sex was accurately determined in all of the 24 cases wherein 19 women were carrying male fetuses and five women were carrying female fetuses. An increase in the amount of fetal DNA was observed with an increase in the gestational age.

CONCLUSIONS:

Real time PCR analysis is a highly sensitive and accurate tool for non-invasive prenatal diagnosis, allowing detection of the sex of the fetus as early as 10 weeks of gestation. Non-invasive prenatal diagnosis eliminates the risk of fetal loss associated with the invasive procedure.  相似文献   

15.

Background

The discovery of cell free fetal DNA (cff-DNA) in maternal plasma has brought new insight for noninvasive prenatal diagnosis. Combining with the rapidly developed massively parallel sequencing technology, noninvasive prenatal detection of chromosome aneuploidy and single base variation has been successfully validated. However, few studies discussed the possibility of noninvasive pathogenic CNVs detection.

Methodology/Principal Findings

A novel algorithm for noninvasive prenatal detection of fetal pathogenic CNVs was firstly tested in 5 pairs of parents with heterozygote α-thalassemia of Southeast Asian (SEA) deletion using target region capture sequencing for maternal plasma. Capture probes were designed for α-globin (HBA) and β-globin (HBB) gene, as well as 4,525 SNPs selected from 22 automatic chromosomes. Mixed adaptors with 384 different barcodes were employed to construct maternal plasma DNA library for massively parallel sequencing. The signal of fetal CNVs was calculated using the relative copy ratio (RCR) of maternal plasma combined with the analysis of R-score and L-score by comparing with normal control. With mean of 101.93× maternal plasma sequencing depth for the target region, the RCR value combined with further R-score and L-score analysis showed a possible homozygous deletion in the HBA gene region for one fetus, heterozygous deletion for two fetus and normal for the other two fetus, which was consistent with that of invasive prenatal diagnosis.

Conclusions/Significance

Our study showed the feasibility to detect pathogenic CNVs using target region capture sequencing, which might greatly extend the scope of noninvasive prenatal diagnosis.  相似文献   

16.
The purpose of this study was to develop a fluorescent polymerase chain reaction (PCR) assay for the detection of circulating fetal DNA in maternal plasma. Maternal DNA extracted from plasma samples of pregnant women at term and newborn DNA isolated from cord blood were used to genotype 12 mother/child pairs at nine different polymorphic short tandem repeat loci. Multiplex fluorescent PCR was used to detect fetus-specific alleles in the corresponding maternal plasma samples. Fetus-specific alleles were found in all maternal plasma samples studied. Using these polymorphic repeat sequences, every mother/child pair was informative in at least four of nine loci. Paternally inherited fetal alleles were detected in 84% of informative short tandem repeats. This approach may have implications for non-invasive prenatal diagnosis. Compared with other fetal DNA detection systems that use fetus-derived Y sequences to detect only male fetal DNA in maternal plasma, our proposed technique can be applied to both female and male fetuses.  相似文献   

17.
孕妇外周血中存在胎儿RNA为无创性产前诊断提供了基础.但血液中富含RNA酶和微量胎儿RNA的特点,对从孕妇血浆中提取胎儿RNA带来困难. 我们以ε血红蛋白基因和胎盘特异表达基因4(PLAC4)mRNA作为研究对象,用改进的异硫氰酸胍法结合硅胶膜离心吸附柱法探索孕妇外周血中胎儿微量RNA的提取方法,获得满意效果. 30例孕妇和9例非孕妇外周血样品中总RNA经凝胶电泳测定显示3条带,分别为28S, 18S和 5.8S. 其28S条带亮度为18S亮度的2倍.总RNA质量浓度(A260/A280)为1.97 g/L,光密度比值(A260-A320)/(A280- A 320)为1.86. 30例孕妇外周血样本有7例提取到ε血红蛋白基因mRNA,ε血红蛋白基因 mRNA 的最小浓度为0.537 μg/mL,最大浓度为1.79 μg/mL,ε血红蛋白基因mRNA的浓度中位数为124 μg/mL. 30例孕妇外周血样本提取到PLAC4 基因mRNA,浓度最小值为2.105×103 copies/mL,最大值为12.760×103 copies/mL,而9例非孕妇中均未提取到(P<0.01),浓度中位数为6.612×103 copies/mL. 因此,改进的异硫氰酸胍法与硅胶膜离心吸附柱纯化法相结合,可有效抑制RNA降解,用于提取、纯化孕妇血液中微量胎儿RNA.  相似文献   

18.
Fetal DNA detection in maternal plasma throughout gestation   总被引:12,自引:0,他引:12  
The presence of fetal DNA in maternal plasma may represent a source of genetic material which can be obtained noninvasively. We wanted to assess whether fetal DNA is detectable in all pregnant women, to define the range and distribution of fetal DNA concentration at different gestational ages, to identify the optimal period to obtain a maternal blood sample yielding an adequate amount of fetal DNA for prenatal diagnosis, and to evaluate accuracy and predictive values of this approach. This information is crucial to develop safe and reliable non-invasive genetic testing in early pregnancy and monitoring of pregnancy complications in late gestation. Fetal DNA quantification in maternal plasma was carried out by real-time PCR on the SRY gene in male-bearing pregnancies to distinguish between maternal and fetal DNA. A cohort of 1,837 pregnant women was investigated. Fetal DNA could be detected from the sixth week and could be retrieved at any gestational week. No false-positive results were obtained in 163 women with previous embryo loss or previous male babies. Fetal DNA analysis performed blindly on a subset of 464 women displayed 99.4, 97.8 and 100% accuracy in fetal gender determination during the first, second, and third trimester of pregnancy, respectively. No SRY amplification was obtained in seven out of the 246 (2.8%) male-bearing pregnancies. Fetal DNA from maternal plasma seems to be an adequate and reliable source of genetic material for a noninvasive prenatal diagnostic approach.  相似文献   

19.
Fetal DNA is present in the plasma of pregnant women. Massively parallel sequencing of maternal plasma DNA has been used to detect fetal trisomies 21, 18, 13 and selected sex chromosomal aneuploidies noninvasively. Case reports describing the detection of fetal microdeletions from maternal plasma using massively parallel sequencing have been reported. However, these previous reports were either polymorphism-dependent or used statistical analyses which were confined to one or a small number of selected parts of the genome. In this report, we reported a procedure for performing noninvasive prenatal karyotyping at 3 Mb resolution across the whole genome through the massively parallel sequencing of maternal plasma DNA. This method has been used to analyze the plasma obtained from 6 cases. In three cases, fetal microdeletions have been detected successfully from maternal plasma. In two cases, fetal microduplications have been detected successfully from maternal plasma. In the remaining case, the plasma DNA sequencing result was consistent with the pregnant mother being a carrier of a microduplication. Simulation analyses were performed for determining the number of plasma DNA molecules that would need to be sequenced and aligned for enhancing the diagnostic resolution of noninvasive prenatal karyotyping to 2 Mb and 1 Mb. In conclusion, noninvasive prenatal molecular karyotyping from maternal plasma by massively parallel sequencing is feasible and would enhance the diagnostic spectrum of noninvasive prenatal testing.  相似文献   

20.
The discovery of cell-free fetal DNA (cfDNA) circulating in the maternal blood has provided new opportunities for noninvasive prenatal diagnosis (NIPD). However, the extremely low levels of cfDNA within a high background of the maternal DNA in maternal circulation necessitate highly sensitive molecular techniques for its reliable use in NIPD. In this proof of principle study, we evaluated the earliest possible detection of cfDNA in the maternal plasma by a bead-based emulsion PCR technology known as BEAMing (beads, emulsion, amplification, magnetics). Blood samples were collected from in vitro fertilization (IVF) patients at 2 to 6 weeks following embryo transfer (i.e., 4 to 8 week pregnancies) and plasma DNA was extracted. The genomic regions of both X and Y chromosome-specific sequences (AMELX and AMELY) were concurrently amplified in two sequential PCRs; first by conventional PCR then by BEAMing. The positive beads either for AMELX or AMELY gene sequences were counted by a flow cytometer. Our results showed that the pregnancies yielding boys had significantly higher plasma AMELY gene fractions (0.512 ± 0.221) than the ones yielding girls (0.028 ± 0.003) or non-pregnant women (0.020 ± 0.005, P= 0.0059). Here, we clearly demonstrated that the BEAMing technique is capable of reliably detecting cfDNA in the blood circulation of 4-week-pregnant women, which is only two weeks after the embryo transfer. BEAMing technique can also be used to early detect fetal DNA alterations in other pregnancy-associated disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号