首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
μ型阿片受体是阿片类药物镇痛与成瘾的分子基础。从人脑组织总RNA通过RTPCR扩增获得μ型阿片受体的cDNA,将其克隆至pcDNA31(+)中,用酶切鉴定正确的重组质粒转染CHO细胞。筛选的单克隆细胞株,检测阳性的细胞克隆表达的μ型阿片受体介导胞内信号转导的能力。通过与激动剂和拮抗剂的信号转导分析证实,阳性的细胞克隆表达的μ型阿片受体与天然的μ型阿片受体具有基本一致的生物学特性,因此可以用来作为高效镇痛低成瘾药物筛选平台的候选细胞株。  相似文献   

2.
本研究利用基因重组技术构建人IL35-IgG4(Fc)融合基因真核表达载体, 稳定转染CHO/DG44细胞并检测重组蛋白的表达。主要采用聚合酶链式反应(PCR)从脂多糖(Lipopolysaccharides, LPS)诱导的人髓性白血病细胞株KG-I cDNA文库中克隆EBI3和IL-12p35 cDNA, 重叠PCR法连接2个片段, 并克隆到IgG4(Fc)- pOptiVEC?-TOPO?载体上,对新构建的IL-35-IgG4 (Fc) pOptiVEC?-TOPO?真核表达载体并进行酶切、测序、PCR鉴定; 脂质体法转染CHO/DG44细胞; RT-PCR检测转染结果, 采用a-MEM-培养基筛选实验组细胞, 对筛选的阳性克隆细胞再进行氨甲喋呤(Methotrexate, MTX)的加压筛选, ProteinG-Agarose纯化阳性克隆培养上清, 免疫印迹检测目的蛋白表达。结果显示IL-35-IgG4 (Fc) pOptiVEC?-TOPO?表达载体稳定转染CHO/DG44细胞并获得阳性克隆; SDS-PAGE电泳得到一条与预期相对分子质量大小相符的蛋白条带; 该蛋白能与羊抗人IgG4抗体特异结合。本实验获得了能够稳定表达具有稳定结构的IL35-IgG4(Fc)融合蛋白的CHO/DG44细胞株。  相似文献   

3.
μ型阿片受体是阿片类药物镇痛与成瘾的分子基础。从人脑组织总RNA通过RT-PCR法扩增获得μ型阿片受体的cDNA,将其克隆至pcDNA3.1( )中,转染CHO细胞后筛选单克隆细胞株,检测重组细胞株表达的μ型阿片受体与激动剂慢性作用介导的胞内信号转导能力。通过激动剂慢性作用信号转导分析证实,DAMGO能够明显抑制吗啡慢性给药引起的重组细胞株胞内cAMP水平的上调作用,初步揭示了阿片受体与特异性配体相互作用的信号转导机制。  相似文献   

4.
VPAC1是垂体腺苷酸环化酶激活多肽(pituitary adenylate cyclase—activating polypeptide,PACAP)和血管活性肠肽(vasoactive intestinal polypeptide,VIP)的共同受体。VPAC1介导PACAP和VIP抑制食欲和抗炎的生物学功能。本研究体外实验表明,VPAC1在分化成熟的3T3-L1脂肪细胞中表达增高,并且VPAC1激动剂(10—1000nmol/L每1×10^6 cells)可诱导脂肪细胞脂解,因此我们预计VPAC1激动剂具有抗肥胖及肥胖综合征的作用。为研究VAPC1激动剂[Lys15,Arg16,Leu27]-VIP(1—7)GRF(8—27)对营养性肥胖及肥胖综合征的干预作用,本研究又设计了两组体内实验:(1)高脂喂养NIH雄性小鼠4周,同时腹腔注射VPAC1激动剂;以注射生理盐水作为对照;(2)高脂喂养NIH雄性小鼠5周,构建肥胖模型后,再腹腔注射VPAC1激动剂4周,同样以注射生理盐水作为对照。采集摄食、体重、体脂、血糖及血脂等指标。结果显示,VPAC1激动剂显著抑制摄食、抑制高脂饮食诱导的体重及体脂(附睾及背部)重量的增长,并有效改善高脂饮食诱导的高血糖及高血脂,提高机体的糖耐受。高剂量(每天50nmol/kg体重)VPAC1激动剂比低剂量(每天5nmol/kg体重)有更显著的抗肥胖作用,提示VPAC1激动剂的抗肥胖作用具有剂量依赖性。以上结果表明,VPAC1激动剂不仅能抑制高脂诱导的肥胖的发展,而且可有效改善肥胖相关疾病:其抗肥胖作用的机制是复杂整合的,值得进一步深入研究。  相似文献   

5.
目的:构建Toll样受体5激动剂CBLB502-Fc融合蛋白的真核表达载体,并在CHO细胞中表达,纯化得到具有生物学活性的目的蛋白。方法:首先从合成的pUC57-CBLB502质粒中扩增出CBLB502基因片段,酶切后克隆至pUC57-Fc质粒中,然后双酶切pc DNA3.1和pUC57-CBLB502-Fc,将CBLB502-Fc基因片段克隆至载体pc DNA3.1,挑选阳性克隆并测序,再将重组质粒转染CHO细胞,筛选高表达细胞系,用免疫印迹鉴定表达情况,Protein A亲和柱纯化目的蛋白,SDS-PAGE鉴定目的蛋白,用小鼠辐射试验初步验证目的蛋白的生物学活性。结果:构建了pc DNA3.1-CBLB502-Fc真核表达载体;转染CHO细胞,筛选得到CBLB502-Fc高表达细胞系,并经免疫印迹鉴定培养上清;纯化得到较高纯度的融合蛋白并经SDS-PAGE鉴定;小鼠辐射实验表明CBLB502-Fc具有抗辐射作用。结论:真核表达并纯化了具有抗辐射作用CBLB502-Fc融合蛋白,为后续研究CBLB502-Fc的生物学功能奠定了重要基础。  相似文献   

6.
为了克服随机整合建立高表达细胞株时“位置效应”所带来的不可预知的后果,我们尝试建立基于定点整合的CHO高效表达系统。首先设计一个新的高效筛选载体pMCEscan。该载体含有报告基因(k2tPA)、扩增基因(dhfr)、重组酶识别序列(FRT)及筛选基因(neo),且neo基因的表达经过系统的弱化,确保能够对基因组中的整合位点进行大规模的高效筛选。然后利用该载体转染CHO/dhfr-细胞并进行大规模筛选以获得足够多的阳性克隆,并对阳性克隆进行系统分析,筛选出报告基因表达水平高、单拷贝且扩增效果好的克隆,此克隆被认为筛选载体整合入CHO细胞基因组中转录热点(Hotspot)区域,从而获得了能够实现外源基因在基因组中定点整合和有效表达的CHO/dhfr-细胞系。随后利用位点特异性重组系统(FLP-FRT)将外源基因定点整合到Hotspot区域,以实现外源基因在CHO细胞基因组中的定点整合及高效表达。并利用该细胞系实现了k2tPA的高表达,表达量达到17.1μg/106cell.24h。该研究致力于CHO细胞基因组中高表达位点的寻找和确认,建立基于定点整合的哺乳动物细胞高效表达系统。  相似文献   

7.
目的:构建真核表达载体p IRES-EGFP-BMP-2,通过Turbo Fect转染得到表达BMP-2蛋白的CHO细胞系。方法:利用逆转录PCR方法扩增获得人的BMP-2基因c DNA,克隆入p MD18-T载体,经PCR、酶切和基因测序分析等方法鉴定重组质粒;将BMP-2连入p IRES-EGFP真核表达载体中,经限制性酶切和PCR扩增鉴定重组质粒。以壳聚糖和Turbo Fect分别作为基因载体转染CHO细胞,荧光显微镜检测分析转染结果;G418筛选富集转染阳性细胞。结果:成功的克隆得到了BMP-2基因,酶切鉴定成功构建了p IRES-EGFP-BMP-2质粒。与壳聚糖组相比,Turbo Fect用量为1:1时,细胞阳性率为(31.92±1.31)%,高于壳聚糖的细胞阳性率(6.33±1.53)%。目的基因与Turbo Fect比例为1:2时转染效率为(42.90±1.10)%高于1:1的(28.59±2.38)%和1:3的(37.52±2.14)%。细胞密度调节到5×103 cells/cm2阳性细胞率可达到(44.43±3.23)%。荧光检测可见荧光阳性细胞得到稳定传代。Western Blot检测可见BMP-2蛋白表达。结论:Turbo Fect成功的介导了p IRES-EGFP-BMP-2载体转染CHO细胞,建立了稳定表达BMP-2和EGFP的CHO细胞株。  相似文献   

8.
PAC1是神经肽垂体腺苷酸环化酶激活多肽(Pituitary adenylate cyclase activating polypeptide,PACAP)的特异受体,属于B族G蛋白偶联受体,介导PACAP的神经递质、神经调质、神经保护、抗神经损伤及调控神经再生等功能,PAC1高表达和神经损伤、肿瘤等生理病理过程密切相关。为了深入了解PAC1的功能,构建PAC1可调控表达的细胞系,通过优化的四环素控制表达系统实现PAC1在中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞的强力霉素(doxycycline,Dox)依赖的可控表达。首先通过双酶切将编码PAC1和增强型黄色荧光蛋白(EYFP,enhanced yellow fluorescent protein)的融和基因PAC1-EYFP克隆到pTRE-Tight载体上,获得重组载体pTRE-PAC1-EYFP;基因测序鉴定正确后将新型的四环素调节元件载体pTet-on advanced和反应元件载体pTRE-PAC1-EYFP分别转入CHO细胞中,G418和潮霉素(Hygromycin)双抗筛选阳性克隆PAC1-Tet-CHO,使用梯度浓度四环素类似物强力霉素Dox诱导PAC1-EYFP表达,48 h后检测受体表达水平,并通过MTT法检测不同PAC1表达水平的细胞增殖活性。荧光检测和Western印迹结果显示,成功获得了具有良好诱导性的Dox依赖的PAC1可控表达的细胞系,这些细胞株在传10代后仍能稳定地可控表达PAC1。MTT结果显示PAC1表达水平越高,细胞增殖活性越强。成功所构建的Dox依赖的PAC1可控表达细胞系,为PAC1的生物学功能的深入研究奠定了基础。  相似文献   

9.
白血病细胞系来源的P2X7受体的功能研究   总被引:1,自引:0,他引:1  
P2X7受体是ATP门控的离子通道。从白血病细胞系J6-1细胞中扩增P2X7受体编码区全序列,克隆到pTARGET真核表达载体,经DNA序列分析后转染Ramos细胞,获得稳定表达细胞株;应用RT-PCR、Westernblot和流式细胞术检测P2X7受体在Ramos中的表达;荧光分光光度计检测P2X7受体介导的胞内钙离子浓度变化。结果显示,J6-1细胞来源的P2X7受体在第559位有一个A→G的有义突变,导致Asn187→Asp187,可在Ramos细胞中表达,在特异性激动剂BzATP作用下可引起胞内钙离子浓度的升高,但所需激动剂浓度高于常规浓度。  相似文献   

10.
白细胞介素-2(IL-2)与其受体相互作用,可促进已活化的T 细胞生长,但只当IL-2与高亲和性受体结合才能释放与生长相关的传导信号。作者从正常人用合成的寡聚核苷酸探针筛选出编码IL-2受体特异的基因克隆。筛选出的数个阳性克隆中,P~(IL-2R)-6克隆经分析发现能编码成人T 细胞白血病细胞表达的IL-2受体的全部序列。作者为了使IL-2受体cDNA 在哺乳细胞中稳定表达,构建了一个P~(SVIL-2R)-3质粒,并  相似文献   

11.
Yu RJ  Xie QL  Dai Y  Gao Y  Zhou TH  Hong A 《Peptides》2006,27(6):1359-1366
In order to obtain the recombinant VPAC2 agonist efficiently by intein-mediated single column purification, a gene encoding 32-amino acids peptide was designed, synthesized and cloned into Escherichia coli expression vector pKYB. The recombinant vector pKY-ROM was transferred into E. coli ER2566 cells and the target protein was over-expressed as a fusion to the N-terminus of a self-cleavable affinity tag. After the rMROM-intein-CBD fusion protein was purified by chitin-affinity chromatography, the self-cleavage activity of the intein was induced by beta-mercaptoethanol and the rMROM with the homogeneity over 95% was released from the chitin-bound intein tag. The recombinant linear rMROM competitively displaced [125I] PACAP38 on VPAC2 with a half-maximal inhibitory concentration (IC50) of 60 +/- 5 nM, whereas the IC50 of rMROM at human VPAC1 was observed up to 10 microM and no binding was detected at PAC1. rMROM stimulated the cAMP accumulation in Chinese hamster ovary (CHO) cells expressing the human VPAC2 with a half-maximal stimulatory concentration (EC50) of 0.6 nM, which was 500-fold less potent at VPAC1and had no activity on PAC1. An efficient production procedure of a novel recombinant VPAC2-selective agonist was established.  相似文献   

12.
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) interact with VPAC(2) receptors in rabbit and guinea pig (GP) gastric muscle but with functionally distinct VIP and PACAP receptors in GP tenia coli. This study examined whether selectivity for VIP was determined by two residues (40, 41) in the extracellular domain that differ in the VIP receptors of GP gastric and tenial muscle. A mutant rat VPAC(2) receptor (L40F, L41F), and two chimeric receptors in which the NH(2)-terminal domain of rat VPAC(2) receptor was replaced with that of GP gastric (chimeric-G) or tenia coli (chimeric-T) VIP receptors, were constructed and expressed in COS-1 cells. VIP and PACAP bound with equal affinity to wild-type and mutant rat VPAC(2) receptors and to chimeric-G receptor (IC(50): VIP 0.3 +/- 0.1 to 1.5 +/- 0.4 nM, PACAP 0.4 +/- 0.1 to 2.5 +/- 0.1 nM) and stimulated cAMP with equal potency (EC(50): VIP 13 +/- 5 to 48 +/- 8 nM, PACAP 8 +/- 3 to 31 +/- 14 nM). VIP bound with high affinity also to chimeric-T receptor (IC(50): 0.5 +/- 0.1 nM) and stimulated cAMP with high potency (EC(50): 3 +/- 1 nM). In contrast, PACAP exhibited >1,000-fold less affinity for binding or potency for stimulating cAMP. We conclude that GP tenia coli express a VIP-specific receptor and that selectivity is determined by a pair of extracellular phenylalanine residues.  相似文献   

13.
Pituitary adenylate cyclase-activating polypeptides (PACAP) have potent regulatory and neurotrophic activities on superior cervical ganglion (SCG) sympathetic neurons with pharmacological profiles consistent for the PACAP-selective PAC(1) receptor. Multiple PAC(1) receptor isoforms are suggested to determine differential peptide potency and receptor coupling to multiple intracellular signaling pathways. The current studies examined rat SCG PAC(1) receptor splice variant expression and coupling to intracellular signaling pathways mediating PACAP-stimulated peptide release. PAC(1) receptor mRNA was localized in over 90% of SCG neurons, which correlated with the cells expressing receptor protein. The neurons expressed the PAC(1)(short)HOP1 receptor but not VIP/PACAP-nonselective VPAC(1) receptors; low VPAC(2) receptor mRNA levels were restricted to ganglionic nonneuronal cells. PACAP27 and PACAP38 potently and efficaciously stimulated both cAMP and inositol phosphate production; inhibition of phospholipase C augmented PACAP-stimulated cAMP production, but inhibition of adenylyl cyclase did not alter stimulated inositol phosphate production. Phospholipase C inhibition blunted neuron peptide release, suggesting that the phosphatidylinositol pathway was a prominent component of the secretory response. These studies demonstrate preferential sympathetic neuron expression of PACAP-selective receptor variants contributing to regulation of autonomic function.  相似文献   

14.
Pituitary adenylate cyclase-activating polypeptide (PACAP) interacts with three types of PACAP/VIP-receptors. The PAC1-receptor accepts PACAP as a high affinity ligand but not vasoactive intestinal peptide (VIP) similarly binding to VPAC1- and VPAC2-receptors. To identify those amino acids not present in VIP defining PAC1-receptor selectivity of PACAP, radio receptor binding assays on AR4-2J cells were performed. It could be shown that PACAP(1-27) exhibited a distinct and much higher susceptibility to VIP-amino acid substitutions, compared to PACAP(1-38). Positions 4 and 5 seem to be most important for receptor binding of PACAP(1-27), whereas position 13 was identified to be crucial for maximal affinity of PACAP(1-38). PACAP(29-38) extension analogues of VIP revealed a stabilizing effect of the C-terminus of PACAP(1-38) on the optimal peptide conformation. The substitution analogues were also checked for their capacity to stimulate IP3 and cAMP formation in AR4-2J cells. Compared to PACAP(1-27) and PACAP(1-38), most analogues revealed potencies reduced congruously to their lower binding affinities. However, one of the analogues, PACAP(1-27) substituted in position 5, may represent a weak antagonist since this peptide was less potent in inducing second messengers than in label displacement. Our findings indicate that PACAP(1-27) and PACAP(1-38) differ in terms of their requirement of the amino acids in positions 4, 5, 9, 11 and 13 for maximal interaction with the PAC1-receptor.  相似文献   

15.
PACAP has opposing roles ranging from activation to inhibition of tumor growth and PACAP agonists/antagonists could be used in tumor therapy. In this study, the effect of PACAP stimulation on signaling pathways was investigated in MCF-7 human adenocarcinoma breast cancer cells. Results showed that MCF-7 cells express VPAC1 and VPAC2, but not PAC1, receptors. In addition, PACAP increased the phosphorylation levels of STAT1, Src and Raf within seconds, confirming their involvement in early stages of PACAP signaling whereas maximal phosphorylation of AKT, ERK and p38 was reached 10 to 20 min later. Moreover, selective inhibition of Src or PI3K resulted in a significant decrease in the phosphorylation of ERK and AKT, but not p38, demonstrating that PACAP signaling follows Src/Raf/ERK and PI3K/AKT pathways. On the other hand, selective inhibition of PLC or PKA resulted in a significant decrease in the phosphorylation of p38, but not AKT or ERK, indicating that PACAP signaling also follows the PLC and PKA/cAMP pathways. Furthermore, PACAP induced ROS through H₂O₂ production whereas pretreatment with NAC inhibitor decreased AKT and ERK phosphorylation, but not p38. Selective NOX2 inhibition affected Src/Raf/Erk and PI3K/Akt pathways, without affecting the p38/PLC/PKA pathway whereas other inhibitors (ML171, VAS2870) had no effect on PACAP induced ROS generation. On the other hand, PACAP induced calcium release, which was decreased by pretreatment with PLC inhibitor. Finally, PACAP stimulation promoted apoptosis by increasing Bax and decreasing Bcl2 expression. In conclusion, we demonstrated that PACAP signaling in MCF-7 cells follows the Src/Raf/ERK and PI3K/AKT pathways and is VPAC1 dependent in a ROS dependent manner, whereas it follows PLC and PKA/cAMP pathways and is VPAC2 dependent through p38 MAP kinase activation involving calcium.  相似文献   

16.
Because the electrophysiological effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on the heart are little known, we studied the regulation of the atrial ATP-sensitive K(+) (K(ATP)) current by PACAP on primary cultured neonatal rat atrial myocytes. PACAP-38 stimulates cAMP production with EC(50) = 0.28 nmol/l (r = 0.92, P < 0.02). PACAP-38 and PACAP-27 (10 nmol/l) have similar maximal effects, whereas 100 nmol/l vasoactive intestinal polypeptide (VIP) is 2.7 times less effective (P < 0.05). RT-PCR shows the presence of cloned PACAP receptors PAC(1) (> or =2 isoforms), VPAC(1), and VPAC(2). PACAP-38 dose dependently activates the whole cell atrial K(ATP) current with EC(50) = 1-3 nmol/l (n = 44). Maximal effects occur at 10 nmol/l (91 +/- 15 pA/pF, n = 18). Diazoxide further increases the PACAP-activated current by 78% (P < 0.05; n = 6). H(89) (500 nmol/l), a protein kinase A (PKA) inhibitor, reduces the PACAP-activated K(ATP) current to 17.8 +/- 9.6% (n = 5) of the maximal diazoxide-induced current and totally inhibits the cAMP-induced K(ATP) current. A protein kinase C (PKC) inhibitor peptide (50 micromol/l) in the pipette reduces the PACAP-38-induced K(ATP) current to 33 +/- 17 pA/pF (P < 0.05, n = 6) without significantly affecting the currents induced by cAMP or VIP. The results suggest that: 1) PAC(1), VPAC(1), and VPAC(2) are present in atrial myocytes; and 2) PACAP-38 activates the atrial K(ATP) channels through both PKA and PKC pathways.  相似文献   

17.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide originally purified from ovine hypothalamus for its potent activity to stimulate cAMP production. However, its presence and action have also been demonstrated in various peripheral tissues including the ovary. In the zebrafish, two forms of PACAP (PACAP(38)-1, adcyap1a; and PACAP(38)-2, adcyap1b) and three PACAP receptors (PAC(1)-R, adcyap1r1; VPAC(1)-R, vipr1; and VPAC(2)-R, vipr2) were all expressed in the ovary. Interestingly, although both follicle cells and oocytes express adcyap1b, the expression of adcyap1a was restricted to the oocytes only. Among the three receptors, adcyap1r1 and vipr2 were expressed in the oocytes, whereas the expression of vipr1 was exclusively located in the follicle cells. Temporal expression analysis of PACAP ligands and receptors during folliculogenesis suggested that PACAP might play differential roles in regulating follicle growth and maturation through different receptors. The two receptors that are expressed in the oocyte (adcyap1r1 and vipr2) showed a significant increase in expression at the transition from the primary growth (PG) stage to previtellogenic (PV) stage and their levels maintained high during follicle growth. However, when the follicle development approached full-grown (FG) stage, these two receptors both decreased significantly in expression. In contrast, vipr1, the receptor expressed in the follicle cells, showed little change in expression at the PG-PV transition and afterwards during follicle growth; however, its expression surged dramatically at the FG stage prior to oocyte maturation. Based on these results, we hypothesized that PACAP might play dual roles in regulating follicle growth and maturation through different receptors located in different compartments. PACAP may stimulate oocyte growth but block its maturation in early follicles by acting directly on the oocyte via PAC1-R and VPAC2-R, whose expression is dominant in growth phase; however, PACAP may promote oocyte maturation in the maturation phase via VPAC1-R on the follicle cells, whose expression surges in FG follicles prior to maturation and is consistently high in the follicles undergoing final maturation. This hypothesis was further supported by the observation that PACAP promoted maturation of follicle-enclosed oocytes but suppressed spontaneous maturation of denuded oocytes in vitro. This study provides strong evidence for a PACAP-mediated signaling network in the zebrafish ovarian follicle, which may play roles in orchestrating follicle growth and maturation via different types of receptors located in different compartments of the follicle.  相似文献   

18.
Pituitary adenylate cyclase-activating polypeptide (PACAP) acts as a feed-forward, paracrine/autocrine factor in the hypothalamic ventromedial nucleus (VMN) for receptivity and sensitizes pituitary hormone release for ovulation. The present study examined receptor(s) and signaling pathway by which PACAP enhances rodent lordosis. PACAP binds to PACAP (PAC1)- and vasoactive intestinal peptide-preferring receptors (VPAC1, VPAC2). Ovariectomized rodents primed with estradiol (EB) were given PACAP or vasoactive intestinal peptide directly onto VMN cells. Only PACAP facilitated receptivity. Pretreatment with VPAC1 and VPAC2 inhibitors blocked both PACAP- and progesterone (P)-induced receptivity. Antisense (AS) oligonucleotides to PAC1 (not VPAC1 or VPAC2) inhibited the behavioral effect of PACAP and P. By real-time RT-PCR, EB, P and EB+P enhanced VMN mRNA expression of PAC1. Within the total PAC1 population, EB and EB+P induced expression of short form PAC1 and PAC1hop2 splice variants. Finally, blocking cAMP/protein kinase A signaling cascade by antagonists to cAMP activity and protein kinase A or by antisense to dopamine- and cAMP-regulated phosphoprotein of 32 kDa blocked the PACAP effect on behavior. Collectively, these findings provide evidence that progesterone receptor-dependent receptivity is, in part, dependent on PAC1 receptors for intracellular VMN signaling and delineate a novel, steroid-dependent mechanism for a feed-forward reinforcement of steroid receptor-dependent reproductive receptivity.  相似文献   

19.
20.
Pituitary adenylate cyclase activating protein (PACAP) and its structurally related vasointestinal peptide (VIP) bind to three G-protein-coupled receptors named VPAC1 and VPAC2 for VIP/PACAP receptors and PAC1 for PACAP preferred receptors. We report that in freshly isolated human monocytes PACAP acts as a pro-inflammatory molecule. By RT-PCR, VPAC1 mRNA was the only receptor found to be expressed; VPAC1 protein was detected by Western blotting and visualized by immunohistochemistry. Signaling pathways activated by PACAP include the extracellular regulated kinase (ERK), the stress-activated MAPK p38, the focal adhesion kinase, Pyk2 and its associated cytoskeleton protein paxillin and the phosphatidylinositol 3-kinase (PI-3K). PACAP induces a transient peak in cytoplasmic calcium associated with an increase in reactive oxygen species production and upregulation in membrane expression of the integrin CD11b as well as the complement receptor 1. Control of the different pathways and functions stimulated by PACAP were evaluated using Phospholipase C (PLC), PI-3K, ERK and p38 MAPK inhibitors and led to the conclusion that PLC and to a lesser degree PI-3K activation are upstream events occurring in VPAC1 mediated PACAP stimulation of monocytes and are in contrast to ERK and p38 mandatory for the initiation of other cellular events associated with monocytes activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号