首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 11-4 p53 cDNA clone failed to transform primary rat fibroblasts when cotransfected with the ras oncogene. Two linker insertion mutations at amino acid 158 or 215 (of 390 amino acids) activated this p53 cDNA for transformation with ras. These mutant cDNAs produced a p53 protein that lacked an epitope, recognized by monoclonal antibody PAb246 (localized at amino acids 88 to 110 in the protein) and preferentially bound to a heat shock protein, hsc70. In rat cells transformed by a genomic p53 clone plus ras, two populations of p53 proteins were detected, PAb246+ and PAb246-, which did or did not bind to this monoclonal antibody, respectively. The PAb246- p53 preferentially associated with hsc70, and this protein had a half-life 4- to 20-fold longer than free p53 (PAb246+). These data suggest a possible functional role for hsc70 in the transformation process. cDNAs for p53 derived from methylcholanthrene-transformed cells transform rat cells in cooperation with the ras oncogene and produce a protein that bound with the heat shock proteins. Recombinant clones produced between a Meth A cDNA and 11-4 were tested for the ability to transform rat cells. A single amino acid substitution at residue 132 was sufficient to activate the 11-4 p53 cDNA for transformation. These studies have identified a region between amino acids 132 and 215 in the p53 protein which, when mutated, can activate the p53 cDNA. These results also call into question what the correct p53 wild-type sequence is and whether a wild-type p53 gene can transform cells in culture.  相似文献   

2.
A rabbit antiserum was prepared against the C-terminal peptide of 21 amino acids from the human heat shock protein hsp70. These antibodies were shown to be specific for this highly inducible heat shock protein (72 kilodaltons [kDa] in rat cells), and for a moderately inducible, constitutively expressed heat shock protein, hsc70 (74 kDa). In six independently derived rat cell lines transformed by a murine cDNA-genomic hybrid clone of p53 plus an activated Ha-ras gene, elevated levels of p53 were detected by immunoprecipitation by using murine-specific anti-p53 monoclonal antibodies. In all cases, the hsc70, but not the hsp70, protein was coimmunoprecipitated with the murine p53 protein. Similarly, antiserum to heat shock protein coimmunoprecipitated p53. Western blot (immunoblot) analysis demonstrated that the hsc70 and p53 proteins did not share detectable antigenic epitopes. The results provide clear immunological evidence for the specific association of a single heat shock protein, hsc70, with p53 in p53-plus-ras-transformed cell lines. A p53 cDNA clone, p11-4, failed to produce clonable cell lines from foci of primary rat cells transfected with p11-4 plus Ha-ras. A mutant p53 cDNA clone derived from p11-4, SVKH215, yielded a 2- to 35-fold increase in the number of foci produced after transfection of rat cells with SVKH215 plus Ha-ras. When cloned, 87.5% of these foci produced transformed cell lines. SVKH215 encodes a mutant p53 protein that binds preferentially to the heat shock proteins of 70 kDa compared with binding by the parental p11-4 p53 gene product. These data suggest that the p53-hsc70 protein complex could have functional significance in these transformed cells.  相似文献   

3.
In cells transformed by mutant mouse p53 plus ras, the former protein is found to be complexed with the heat-shock protein cognate hsc70. To determine whether hsc70 can directly affect neoplastic transformation, nonestablished rat embryo fibroblasts (REF) were transfected with rat genomic hsc70 DNA in conjunction with various oncogenes. We report here that the hsc70 gene could efficiently suppress focus induction by mutant p53 plus ras, as well as by myc plus ras. No inhibitory effect of hsc70 was detectable in assays monitoring the ability of REF to be immortalized by mutant p53, arguing against a nonspecific deleterious effect of the hsc70 genomic clone on REF survival and proliferation. Lines generated in the presence of the hsc70 plasmid produced augmented levels of hsc70. Plasmids encoding only short NH2-terminal fragments of hsc70 could also, in some cases, partially reduce oncogene-mediated focus formation. However, a maximal inhibitory effect required the production of a functional hsc70 protein. The data presented here raise the possibility that hsc70 may be directly involved in the modulation of oncogene-mediated transformation.  相似文献   

4.
5.
6.
The p53 proto-oncogene can act as a suppressor of transformation   总被引:228,自引:0,他引:228  
C A Finlay  P W Hinds  A J Levine 《Cell》1989,57(7):1083-1093
DNA clones of the wild-type p53 proto-oncogene inhibit the ability of E1A plus ras or mutant p53 plus ras-activated oncogenes to transform primary rat embryo fibroblasts. The rare clones of transformed foci that result from E1A plus ras plus wild-type p53 triple transfections all contain the p53 DNA in their genome, but the great majority fail to express the p53 protein. The three cell lines derived from such foci that express p53 all produce mutant p53 proteins with properties similar or identical to transformation-activated p53 proteins. The p53 mutants selected in this fashion (transformation in vitro) resemble the p53 mutants selected in tumors (in vivo). These results suggest that the p53 proto-oncogene can act negatively to block transformation.  相似文献   

7.
Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome   总被引:13,自引:0,他引:13  
Olive KP  Tuveson DA  Ruhe ZC  Yin B  Willis NA  Bronson RT  Crowley D  Jacks T 《Cell》2004,119(6):847-860
The p53 tumor suppressor gene is commonly altered in human tumors, predominantly through missense mutations that result in accumulation of mutant p53 protein. These mutations may confer dominant-negative or gain-of-function properties to p53. To ascertain the physiological effects of p53 point mutation, the structural mutant p53R172H and the contact mutant p53R270H (codons 175 and 273 in humans) were engineered into the endogenous p53 locus in mice. p53R270H/+ and p53R172H/+ mice are models of Li-Fraumeni Syndrome; they developed allele-specific tumor spectra distinct from p53+/- mice. In addition, p53R270H/- and p53R172H/- mice developed novel tumors compared to p53-/- mice, including a variety of carcinomas and more frequent endothelial tumors. Dominant effects that varied by allele and function were observed in primary cells derived from p53R270H/+ and p53R172H/+ mice. These results demonstrate that point mutant p53 alleles expressed under physiological control have enhanced oncogenic potential beyond the simple loss of p53 function.  相似文献   

8.
J V Gannon  R Greaves  R Iggo    D P Lane 《The EMBO journal》1990,9(5):1595-1602
Point mutations in the p53 gene are the most frequently identified genetic change in human cancer. They convert murine p53 from a tumour suppressor gene into a dominant transforming oncogene able to immortalize primary cells and bring about full transformation in combination with an activated ras gene. In both the human and murine systems the mutations lie in regions of p53 conserved from man to Xenopus. We have developed a monoclonal antibody to p53 designated PAb240 which does not immunoprecipitate wild type p53. A series of different p53 mutants all react more strongly with PAb240 than with PAb246. The PAb240 reactive form of p53 cannot bind to SV40 large T antigen but does bind to HSP70. In contrast, the PAb246 form binds to T antigen but not to HSP70. PAb240 recognizes all forms of p53 when they are denatured. It reacts with all mammalian p53 and chicken p53 in immunoblots. We propose that immunoprecipitation of p53 by PAb240 is diagnostic of mutation in both murine and human systems and suggest that the different point mutations which convert p53 from a recessive to a dominant oncogene exert a common conformational effect on the protein. This conformational change abolishes T antigen binding and promotes self-oligomerization. These results are consistent with a dominant negative model where mutant p53 protein binds to and neutralizes the activity of p53 in the wild type conformation.  相似文献   

9.
Previous studies of premature chain termination mutants and in frame deletion mutants of the p21 ras transforming protein encoded by the transforming gene of Harvey murine sarcoma virus (Ha-MuSV) have suggested that the C terminus is required for cellular transformation, lipid binding, and membrane localization. We have now further characterized the post-translational processing of these mutants and have also studied two C-terminal v-rasH point mutants: one encodes serine in place of cysteine-186, the other threonine for valine-187. The Thr-187 mutant was transformation-competent, and its p21 protein was processed normally, as was the p21 encoded by a transformation-competent deletion mutant from which amino acids 166-175 had been deleted. The Ser-186 mutant was defective for transformation. The p21s encoded by the Ser-186 mutant and by the previously described transformation-defective mutants did not undergo the posttranslational processing common to biologically active ras proteins: their electrophoretic migration rate did not change, they remained in the cytosol, and they failed to bind lipid. Since the cell-encoded ras proteins also contain this cysteine, we conclude that this amino acid residue is required for all ras proteins.  相似文献   

10.
Common cancer mutations of p53 tend either to lower the stability or distort the core domain of the protein or weaken its DNA binding affinity. We have previously analyzed in vitro the effects of mutations on the core domain of p53. Here, we extend those measurements to full-length p53, using either the wild-type protein or a biologically active superstable construct that is more amenable to accurate biophysical measurements to assess the possibilities of rescuing different types of mutations by anticancer drugs. The tetrameric full-length proteins had similar apparent melting temperatures to those of the individual domains, and the structural mutations lowered the melting temperature by similar amounts. The thermodynamic stability of tetrameric p53 is thus dictated by its core domain. We determined that the common contact mutation R273H weakened binding to the gadd45 recognition sequence by approximately 700-1000 times. Many mutants that have lowered melting temperatures should be good drug targets, although the common R273H mutant binds response elements too weakly for simple rescue.  相似文献   

11.
K Ory  Y Legros  C Auguin    T Soussi 《The EMBO journal》1994,13(15):3496-3504
In an effort to correlate the biological activity of the p53 protein with its conformation, we analysed 14 p53 mutants representative of the most frequently observed protein alterations in human cancers, at codons 175, 248 and 273 (22% of all mutations thus far reported), all three of which contained a CpG dinucleotide. Strikingly, most of the mutants at codons 248 and 273 did not display any change in their conformation, as probed by monoclonal antibodies PAb240 and PAb1620 or by binding to hsp70 protein. For all 14 mutants tested, we found a strict correlation between the transactivation properties of p53, tested either on RGC sequences or using the WAF-1 promoter, and inhibition of cell proliferation. All these mutants showed nuclear localization. Several mutants, present at a low incidence in human tumours, displayed wild-type activity in all our assays, suggesting that the presence of a mutation is not strictly correlated with p53 protein inactivation in tumours. Further analysis of nine thus far undescribed p53 mutants at codon 175 revealed a wild-type or mutant behaviour. All these results suggest that the occurrence of a mutation is dependent on two criteria: (i) the mutability of a given codon, such as those containing a CpG dinucleotide; (ii) the resulting amino acids, eventually leading to synthesis of a p53 conferring a growth advantage on the cell.  相似文献   

12.
目的 p53是人体内重要的肿瘤抑制因子,但在人类肿瘤中因高频突变而失去抑癌功能。突变型p53(mutant p53,mutp53)可促进肿瘤的发生、发展和转移。由于在肿瘤细胞中通常有较高表达,mutp53已成为区别于正常细胞的一个特异性抗肿瘤靶点。本研究旨在探索穿心莲内酯的抗肿瘤作用机制,为寻找靶向mutp53的抗肿瘤化合物提供理论依据。方法 构建可以快速筛选具有恢复mutp53下游转录因子的荧光素酶系统,观察穿心莲内酯对H1299-p53 R273H-PUMA-luciferase和H1299-p53R175H-PUMA-luciferase细胞中PUMA基因的表达情况;采用免疫荧光实验,检测穿心莲内酯对HT29(R273H)和SK-BR-3(R175H)细胞中mutp53的表达影响;采用免疫印迹实验进一步观察穿心莲内酯恢复了mutp53肿瘤细胞中p53下游靶蛋白PUMA、p21、Noxa的表达;随后采用MTT和流式细胞分析,检测穿心莲内酯对肿瘤细胞增殖和凋亡的影响;此外,还通过siRNA敲低Hsp70表达后,研究穿心莲内酯对mutp53下游基因的重激活作用。结果 穿心莲内酯可以增加H1299-p53 R273H-PUMA-luciferase和H1299-p53R175H-PUMA-luciferase细胞中PUMA基因的表达;穿心莲内酯可以降低HT29(R273H)和SK-BR-3(R175H)细胞中mutp53的比例,同时增加野生型p53的比例;穿心莲内酯恢复了mutp53肿瘤细胞中p53下游靶蛋白PUMA、p21、Noxa的表达,进而抑制肿瘤细胞增殖和诱导凋亡;穿心莲内酯可以增加分子伴侣Hsp70的表达,通过siRNA敲低Hsp70后,穿心莲内酯对mutp53下游基因的重激活作用明显受到抑制。结论 穿心莲内酯可能通过影响Hsp70的表达从而激活突变p53下游靶基因而发挥抗肿瘤作用。  相似文献   

13.
14.
Numerous p53 missense mutations possess gain-of-function activities. Studies in mouse models have demonstrated that the stabilization of p53 R172H (R175H in human) mutant protein, by currently unknown factors, is a prerequisite for its oncogenic gain-of-function phenotype such as tumour progression and metastasis. Here we show that MDM2-dependent ubiquitination and degradation of p53 R175H mutant protein in mouse embryonic fibroblasts is partially inhibited by increasing concentration of heat shock protein 70 (HSP70/HSPA1-A). These phenomena correlate well with the appearance of HSP70-dependent folding intermediates in the form of dynamic cytoplasmic spots containing aggregate-prone p53 R175H and several molecular chaperones. We propose that a transient but recurrent interaction with HSP70 may lead to an increase in mutant p53 protein half-life. In the presence of MDM2 these pseudoaggregates can form stable amyloid-like structures, which occasionally merge into an aggresome. Interestingly, formation of folding intermediates is not observed in the presence of HSC70/HSPA8, the dominant-negative K71S variant of HSP70 or HSP70 inhibitor. In cancer cells, where endogenous HSP70 levels are already elevated, mutant p53 protein forms nuclear aggregates without the addition of exogenous HSP70. Aggregates containing p53 are also visible under conditions where p53 is partially unfolded: 37°C for temperature-sensitive variant p53 V143A and 42°C for wild-type p53. Refolding kinetics of p53 indicate that HSP70 causes transient exposure of p53 aggregate-prone domain(s). We propose that formation of HSP70- and MDM2-dependent protein coaggregates in tumours with high levels of these two proteins could be one of the mechanisms by which mutant p53 is stabilized. Moreover, sequestration of p73 tumour suppressor protein by these nuclear aggregates may lead to gain-of-function phenotypes.  相似文献   

15.
Expression of a p53-associated protein, Mdm-2 (murine double minute-2), can inhibit p53-mediated transactivation. In this study, overexpression of the Mdm-2 protein was found to result in the immortalization of primary rat embryo fibroblasts (REFs) and, in conjunction with an activated ras gene, in the transformation of REFs. The effect of wild-type p53 on the transforming properties of mdm-2 was determined by transfecting REFs with ras, mdm-2, and normal p53 genes. Transfection with ras plus mdm-2 plus wild-type p53 resulted in a 50% reduction in the number of transformed foci (relative to the level for ras plus mdm-2); however, more than half (9 of 17) of the cell lines derived from these foci expressed low levels of a murine p53 protein with the characteristics of a wild-type p53. These results are in contrast to previous studies which demonstrated that even minimal levels of wild-type p53 are not tolerated in cells transformed by ras plus myc, E1A, or mutant p53. The mdm-2 oncogene can overcome the previously demonstrated growth-suppressive properties of p53.  相似文献   

16.
Transforming activity of mutant human p53 alleles   总被引:6,自引:0,他引:6  
Mutant forms of the p53 gene have been shown to cooperate with an activated ras gene in transforming primary cells in culture. The aberrant proteins encoded by p53 mutants are thought to act in a dominant negative manner in these assays. In vivo data, however, reveal that where p53 has undergone genetic change in tumors, both alleles have been affected. We previously identified a case of human acute myelogenous leukemia (AML) in which both alleles of the p53 gene had undergone independent missense mutations (at codons 135 cys to ser and 246 met to val). In these blasts, p53 mutations appear to be acting recessively. We have assayed the transforming potential of these p53 mutations, as well as that of another mutation at codon 273, also identified in a human neoplasm. Both mutations from the AML blasts (codon 135 and codon 246) confer transforming ability on the mutant protein. While transformation assays may define functionally different subsets of p53 mutations, the overexpression phenotype of mutants in this assay may not accurately reflect the pathological effects of p53 mutations in vivo.  相似文献   

17.
Previous experiments have brought into question which amino acid sequence of the p53 oncogene product should be considered wild type and whether the normal protein is capable of cooperating with the ras oncogene to transform cells in culture. To address these questions, a series of p53 cDNA-genomic hybrid clones have been compared for the ability to cooperate with the ras oncogene in transformation assays. From these experiments, it has become clear that the amino acid alanine at position 135, in either the genomic clone or the cDNA clone, failed to produce a p53 protein that cooperated with the ras oncogene and transformed cells. Replacing alanine with valine at this position in either the genomic or the cDNA clone activated for transformation in this assay. Using restriction enzyme polymorphisms in the p53 gene, it was shown that normal mouse DNA encodes alanine at position 135 in the p53 protein. Thus, mutation is required to activate the p53 protein for cooperation with the ras oncogene. After cotransfection with the activated ras gene, the genomic p53 DNA clone always produced more transformed cell foci (1.7-fold) than similar cDNA clones and these foci were more readily cloned (3.6-fold) into permanent cell lines. A series of deletion mutants of the genomic p53 clone were employed to show that the presence of intron 4 in the p53 gene was sufficient to provide much enhanced clonability of transformed foci from culture dishes. The presence of introns in the p53 gene constructions also resulted in elevated levels of p53 protein in the p53-plus-ras-transformed cell lines. Thus, qualitative changes in the p53 protein are required to activate p53 for transformation with the oncogene ras. Quantitative improvements of transformation frequencies are associated with the higher expression levels of altered p53 protein that are provided by having one of the p53 introns in the transforming plasmid.  相似文献   

18.
19.
Using highly purified proteins, we have identified intermediate reactions that lead to the assembly of molecular chaperone complexes with wild-type or mutant p53R175H protein. Hsp90 possesses higher affinity for wild-type p53 than for the conformational mutant p53R175H. The presence of Hsp90 in a complex with wild-type p53 inhibits the binding of Hsp40 and Hsc70 to p53, consequently preventing the formation of wild-type p53-multiple chaperone complexes. The conformational mutant p53R175H can form a stable heterocomplex with Hsp90 only in the presence of Hsc70, Hsp40, Hop and ATP. The anti-apoptotic factor Bag-1 can dissociate Hsp90 from a pre- assembled complex wild-type p53 protein, but it cannot dissociate a pre-assembled p53R175H-Hsp40- Hsc70-Hop-Hsp90 heterocomplex. The results presented here provide possible molecular mechanisms that can help to explain the observed in vivo role of molecular chaperones in the stabilization and cellular localization of wild-type and mutant p53 protein.  相似文献   

20.
p53 is altered in about 50 % of cancers. Most of the p53 mutants have lost the wild-type tumour suppressor activity but show oncogenic properties. The majority of the p53 alterations are missense mutations of residues located in its DNA binding domain (DBD). Only a few mutations concern residues in its tetramerisation domain (TD). However, the study of mutant proteins identified in tumors that do not form tetramers has shown that they have lost the wild-type activity like most of the p53 DBD mutants. Here, we show that two of such mutant proteins, Arg342Pro and Leu344Pro are not dominant negative and do not stimulate the expression of a reporter gene under the control of the multi-drug resistance gene-1 (MDR-1). This suggests that to be oncogenic, p53 mutants need to form tetramers. Accordingly, the dominant negative effect and the ability of a tetrameric mutant protein, Asp281Gly, to stimulate the MDR-1 promoter are abolished when its TD is rendered non-functional by the mutation of leucine 344 to a proline residue. These results suggest that mutations in the TD, are less selected in tumors than mutations in the DBD because they do not lead to oncogenic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号