首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
肠道微生物组被誉为动物的“第二套基因组”,与动物的个体发育、营养获取、生理功能、免疫调节等重要活动密切相关。非人灵长类在生态位、社会结构、地理分布以及进化上与人类相近,开展其肠道微生物研究不仅有助于了解灵长类的生态、保护和进化,而且对深入了解肠道微生物在人类进化中所发挥的作用也具有重要的参考价值。本文总结了影响非人灵长类肠道微生物变化的因素,包括系统发育、觅食、栖息地破碎化、年龄和性别、圈养方式以及社群生活,并探讨了肠道微生物研究在非人灵长类生态、行为、保护以及适应性进化方面的应用。未来,非人灵长类肠道微生物研究将为灵长类生态、进化和人类健康的研究提供新的视角,为灵长类的保护提供新的理论基础和研究方法。  相似文献   

2.
声音通讯是非人灵长类研究一个重要的研究领域,有助于了解非人灵长类的社会行为、个体关系、行为进化和社会演化等,甚至对探究人类语言起源和进化等方面也具有十分重要的意义。本文通过对非人灵长类声音通讯的研究内容、影响因素和研究方法等进行了梳理,探讨非人灵长类声音通讯研究的前景和展望,旨在进一步推动国内非人灵长类声音通讯研究的深入,同时为相关研究提供借鉴和参考。  相似文献   

3.
非人灵长类动物在亲缘关系上和人最接近,与人类的遗传物质有75%~98.5%的同源性,在组织结构、免疫、生理和代谢等方面与人类高度近似,是极其珍贵的实验动物,其应用价值远超过其他种属的实验动物。本文就非人灵长类和人类之间的进化关系和目前的使用情况,及其在毒理学、传染病、神经科学、生殖生物学、胎儿发育和衰老等医学科学实验中的应用等方面的内容做了简要的介绍。  相似文献   

4.
灵长类学是研究灵长类的科学,有时也涉及古生物学和研究人类的人类学。为了区别起见,称灵长类动物为非人灵长类(Nonhuman primates)或次人灵长类(Subhuman primates)。本文只讨论灵长类学中现存灵长类动物生物学的研究进展。 灵长类动物同人类的亲缘关系最为密切。所以,灵长类学诸方面的研究,如行为科学,神经生物学,生殖生物学,病理学,免疫学,细胞遗传学,形态学和分子生物学等,对于认识人类的进化和社会活动,对于人口控制和医学等均有一定的理论和应用意义。  相似文献   

5.
奇云 《生物学通报》2006,41(2):13-14
1 人类与黑猩猩基因组比较初步完成 2005年8月31日,来自美国、以色列、德国、意大利和西班牙等国家20多个科研机构的67名科学家组成的“国际黑猩猩基因测序与分析联盟”宣布,他们初步完成了黑猩猩基因组序列与人类基因组序列的  相似文献   

6.
解读人类和黑猩猩之间的差异性对于研究人类的进化历史具有非常重要的意义。人类和黑猩猩Y染色体相继测序完毕,利用dot-plot程序可以分析它们之间的差异性。研究结果显示,人类和黑猩猩MSY区在结构和基因含量上有很大的差异,人类MSY常染色质主要由扩增序列、X退化序列和X转座序列组成,而黑猩猩MSY常染色质主要由扩增序列和X退化序列组成。黑猩猩的MSY区含有19个回文序列,而人类只有8个回文序列。黑猩猩MSY区的基因只包含了人类MSY区基因的三分之二。通过分析可以推测,黑猩猩和人类MSY之间的显著差异主要来源于四个因素的协同作用:MSY在精子生成中的主要作用;MSY区内频繁的异常重组;减数分裂交叉重组中的"遗传便车"效应;配偶行为引起的精子的竞争。综合比较黑猩猩和人类Y染色体结构和基因含量将对研究Y染色体的进化历史及其动力产生非常重要的意义。  相似文献   

7.
恒河猴在生殖生物学中的应用进展   总被引:1,自引:0,他引:1  
目的非人灵长类动物在生殖生物学研究领域是一种非常重要的实验动物。人类利用非人灵长类动物与人的生物学等方面相似的特征,开展了生殖生物学、生理学、药理学、毒理学以及生育调节等方面的研究工作,为生殖生物学基础研究以及人类健康和疾病问题的基础研究和临床前研究提供了理想的动物模型。随着生命科学的发展,对非人灵长类实验动物质量提出了更高的要求,人们认识到实验时,应用健康的优质非人灵长类动物的重要性。本文简要概括了非人灵长类动物恒河猴的生物学特性,阐述了非人灵长类动物恒河猴在生殖生物学中的应用研究。  相似文献   

8.
哺乳动物经过长期进化,使其基因组在结构和功能上存在着明显的差异,构成了表型进化的基础。随着人类、部分哺乳动物基因组测序的完成,以比较基因组学为主要研究手段的哺乳动物进化研究应运而生,从而为在基因组水平上深入认识哺乳动物进化关系、揭示生命的起源和进化提供依据。对比较基因组学的主要研究方法进行了综述,进而探讨其在哺乳动物进化研究中的应用,并对哺乳动物比较基因组学的发展进行了展望。  相似文献   

9.
为什么人类与其他灵长动物不同 ,这种不同并不是人类的基因组成与其他灵长类的基因组成不同 ,而是这些基因的激活发生了变化 ,并且主要是脑组织中基因激活的变化。德国的科学家利用基因芯片技术 ,分析了因自然因素死亡的人、黑猩猩、猕猴、猩猩的脑 ,肝脏和血液标本的 180 0 0个表达的基因。在肝脏和血液标本中基因表达在这些灵长类动物中没有大的区别。而在大脑的标本中 ,黑猩猩和人类的基因表达有很大的区别 ,黑猩猩与其它灵长类动物的表达则基本相同。通过分析灵长类动物种系与这些基因表达的关系 ,科学家推测 ,在进化的后期 ,人脑的进化…  相似文献   

10.
测定人猿超科(人、黑猩猩、大猩猩、红毛猩猩和长臂猿)和旧大陆猴(猕猴和叶猴)7种高等灵长类FKN全基因序列, 探讨其系统进化分析。用简并引物PCR(Degenerated PCR)法分别扩增FKN的3个外显子, 其产物经琼脂糖凝胶回收、纯化后测序, 然后用BioEdit软件剪切拼接FKN基因全序列, 用DNAStar比对后比较基因和氨基酸序列同源性, Mega软件重构FKN基因进化树, 应用Datamonkey分析FKN的负选择位点。序列分析发现人猿超科较旧大陆猴FKN基因除了有散在的点突变外, 还有一明显的30 bp的核苷酸缺失突变; 人FKN基因序列与黑猩猩、大猩猩、红毛猩猩、长臂猿、猕猴和叶猴的同源性分别是99.2%、98.4%、98.1%、96.5%、95.9%和93.8%, 由此推导的氨基酸序列同源性分别是98.5%、98.0%、97.7%、94.7%、93.7%和90.5%; FKN基因进化树表明人与黑猩猩关系更近, FKN基因进化和通常认为的物种进化一致; Datamonkey分析结果显示FKN存在3个负选择位点53Q、84D、239N。成功获得人、黑猩猩、大猩猩、红毛猩猩、长臂猿、猕猴和叶猴7种高等灵长类物种FKN全基因序列, 为后续探讨FKN在高等灵长类物种进化过程中免疫学功能演变及其结构与功能的关系奠定基础。  相似文献   

11.
12.
Zoonotic transmission and emergence of pathogens are serious threats to endangered populations of free-ranging primate species. Recent discovery of a nonpathogenic yet highly prevalent virus in human populations, TT virus (TTV), has prompted studies into the presence of this virus among captive individuals of other species of nonhuman primates. In this study, we screened captive primate species for TTV. In addition, we provide the first data on TTV infectionin free-ranging primates by noninvasive screening of three chimpanzee (Pan troglodytes sweinfurthii) commlunities. Phylogenetic relationships between virus isolates and those previously reported from hulman popullations, captive primates, and domesticated species are inferred. Our findings are discussed with respect to potential zoonotic events that may result from increased levels of human encroachlment into wild habitats.  相似文献   

13.
Modeling human diseases using nonhuman primates including chimpanzee, rhesus, cynomolgus, marmoset and squirrel monkeys has been reported in the past decades. Due to the high similarity between nonhuman primates and humans, including genome constitution, cognitive behavioral functions, anatomical structure, metabolic, reproductive, and brain functions; nonhuman primates have played an important role in understanding physiological functions of the human body, clarifying the underlying mechanism of human diseases, and the development of novel treatments for human diseases. However, nonhuman primate research has been restricted to cognitive, behavioral, biochemical and pharmacological approaches of human diseases due to the limitation of gene transfer technology in nonhuman primates. The recent advancement in transgenic technology that has led to the generation of the first transgenic monkey in 2001 and a transgenic monkey model of Huntington’s disease (HD) in 2008 has changed that focus. The creation of transgenic HD monkeys that replicate key pathological features of human HD patients further suggests the crucial role of nonhuman primates in the future development of biomedicine. These successes have opened the door to genetic manipulation in nonhuman primates and a new era in modeling human inherited genetic disorders. We focused on the procedures in creating transgenic Huntington’s disease monkeys, but our work can be applied to transgenesis in other nonhuman primate species.  相似文献   

14.
15.
Benign duodenal tumours have very rarely been reported in captive non-human primates and are also rare in human beings. Brunner's gland hyperplasia has not been fully described in a non-human primate. Here, we report Brunner's gland hyperplasia in a geriatric chimpanzee, which was an incidental finding during post-mortem examination.  相似文献   

16.
17.
Summary Based on mitochondrial DNA (mt-DNA) sequence data from a wide range of primate species, branching order in the evolution of primates was inferred by the maximum likelihood method of Felsenstein without assuming rate constancy among lineages. Bootstrap probabilities for being the maximum likelihood tree topology among alternatives were estimated without performing a maximum likelihood estimation for each resampled data set. Variation in the evolutionary rate among lineages was examined for the maximum likelihood tree by a method developed by Kishino and Hasegawa. From these analyses it appears that the transition rate of mtDNA evolution in the lemur has been extremely low, only about 1/10 that in other primate lines, whereas the transversion rate does not differ significantly from that of other primates. Furthermore, the transition rate in catarrhines, except the gibbon, is higher than those in the tarsier and in platyrrhines, and the transition rate in the gibbon is lower than those in other catarrhines. Branching dates in primate evolution were estimated by a molecular clock analysis of mtDNA, taking into account the rate of variation among different lines, and the results were compared with those estimated from nuclear DNA. Under the most likely model, where the evolutionary rate of mtDNA has been unifrom within a great apes/human calde, human/chimpanzee clustering is preferred to the alternative branching orders among human, chimpanzee, and gorilla.  相似文献   

18.
A genetic linkage map of the vervet monkey (Chlorocebus aethiops sabaeus)   总被引:1,自引:0,他引:1  
The spectacular progress in genomics increasingly highlights the importance of comparative biology in biomedical research. In particular, nonhuman primates, as model systems, provide a crucial intermediate between humans and mice. The close similarities between humans and other primates are stimulating primate studies in virtually every area of biomedical research, including development, anatomy, physiology, immunology, and behavior. The vervet monkey (Chlorocebus aethiops sabaeus) is an important model for studying human diseases and complex traits, especially behavior. We have developed a vervet genetic linkage map to enable mapping complex traits in this model organism and facilitate comparative genomic analysis between vervet and other primates. Here we report construction of an initial genetic map built with about 360 human orthologous short tandem repeats (STRs) that were genotyped in 434 members of an extended vervet pedigree. The map includes 226 markers mapped in a unique order with a resolution of 9.8 Kosambi centimorgans (cM) in the vervet monkey genome, and with a total length (including all 360 markers) of 2726 cM. At least one complex and 11 simple rearrangements in marker order distinguish vervet chromosomes from human homologs. While inversions and insertions can explain a similar number of changes in marker order between vervet and rhesus homologs, mostly inversions are observed when vervet chromosome organization is compared to that in human and chimpanzee. Our results support the notion that large inversions played a less prominent role in the evolution within the group of the Old World monkeys compared to the human and chimpanzee lineages. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

19.
Han K  Lee J  Meyer TJ  Wang J  Sen SK  Srikanta D  Liang P  Batzer MA 《PLoS genetics》2007,3(10):1939-1949
With more than 1.2 million copies, Alu elements are one of the most important sources of structural variation in primate genomes. Here, we compare the chimpanzee and human genomes to determine the extent of Alu recombination-mediated deletion (ARMD) in the chimpanzee genome since the divergence of the chimpanzee and human lineages (~6 million y ago). Combining computational data analysis and experimental verification, we have identified 663 chimpanzee lineage-specific deletions (involving a total of ~771 kb of genomic sequence) attributable to this process. The ARMD events essentially counteract the genomic expansion caused by chimpanzee-specific Alu inserts. The RefSeq databases indicate that 13 exons in six genes, annotated as either demonstrably or putatively functional in the human genome, and 299 intronic regions have been deleted through ARMDs in the chimpanzee lineage. Therefore, our data suggest that this process may contribute to the genomic and phenotypic diversity between chimpanzees and humans. In addition, we found four independent ARMD events at orthologous loci in the gorilla or orangutan genomes. This suggests that human orthologs of loci at which ARMD events have already occurred in other nonhuman primate genomes may be “at-risk” motifs for future deletions, which may subsequently contribute to human lineage-specific genetic rearrangements and disorders.  相似文献   

20.
Comparison of human and primate erythrocyte membrane sialoglycoproteins showed that common chimpanzee, dwarf chimpanzee, gorilla, orangutan, and gibbon have major periodic acid Schiff-positive proteins resembling human glycophorin A (GPA) monomer and dimer in electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels. Immunoperoxidase staining of Western blots with monoclonal antibodies to human GPA showed that these primate bands express some GPA antigenic determinants. A new sialoglycoprotein analogous to human glycophorin B (GPB) was detected in common chimpanzee. Although human MN blood group phenotype results from an amino acid polymorphism of GPA, Western blots showed that in chimpanzee sialoglycoprotein (GPAch) always expresses the M blood group, whereas chimpanzee sialoglycoprotein (GPBch) expresses either the N blood group or a null phenotype. This result explains the detection of M and MN, but not of N, blood group phenotypes in chimpanzee. GPBch has higher apparent m.w. than human GPB, is present in the erythrocyte membrane in greater quantity than human GPB, and contains trypsin cleavage site(s) and the 10F7 determinant (both found on human GPA but not GPB). Expression of human GPA antigenic determinants was consistent with the phylogeny of the hominoid primates; common and dwarf chimpanzee expressed most of the determinants tested, gorilla and orangutan an intermediate number, and gibbon and siamang the least. Of the GPA antigenic determinants examined, the MN blood group determinants were most consistently expressed during evolution of the hominoid primates. The results suggested that variability in expression of GPA antigenic determinants between species was due to both differences in amino acid sequence and glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号