首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 722 毫秒
1.
2.
Engineering cold stress tolerance in crop plants   总被引:2,自引:0,他引:2  
  相似文献   

3.
植物抗寒及其基因表达研究进展   总被引:6,自引:0,他引:6  
曹琴  孔维府  温鹏飞 《生态学报》2004,24(4):806-811
植物经过逐渐降低的温度从而提高抗寒能力 ,这个过程被人们称为低温驯化。植物低温驯化过程是一个复杂的生理、生化和能量代谢变化过程 ,这些变化主要包括膜系统的稳定性、可溶性蛋白的积累和小分子渗透物质 ,比如脯氨酸、糖等 ,这些变化中的一些是植物抗寒必需的 ,而另外一些变化不是必需的。主要对冷害和低温生理生化变化、低温诱导表达基因的功能和作用、低温驯化的调节机制及其信号转导方面进行了综述。通过差别筛选 c DNA文库的方法已经鉴定了许多低温诱导表达、进而提高植物抗寒能力的基因 ,其中有脱水素、COR基因和 CBF1转录因子等。低温信号的感受、转导和调节表达是低温驯化的关键环节 ,低温信号的转导过程与干旱胁迫之间具有一定的交叉 ,这为利用 ABA等来提高植物抗寒能力成为可能 ,相信不久的将来人们可以通过提高植物抗寒能力从而增加经济产量成为现实。  相似文献   

4.
Molecular control of cold acclimation in trees   总被引:8,自引:0,他引:8  
Frost tolerance is an acquired characteristic of plants that is induced in response to environmental cues preceding the onset of freezing temperatures and activation of a cold acclimation program. In addition to transient acclimation to low non-freezing temperatures and enhancing survival to short frost episodes during the growth season, perennial woody plants need additionally to survive the cold winter months. Trees have evolved a complex dynamic process controlling the development of dormancy and freezing tolerance that secures accurate initiation and termination of the overwintering process. Although the phenology of overwintering has been known for decades, only recently has there been progress in elucidating the molecular mechanisms of dormancy and freezing tolerance development in perennial plants. Current molecular and genomic studies indicate that herbaceous annual and woody perennial plants share similar cold acclimation mechanisms. Both the signal processes controlling cold acclimation and the cold-regulated target genes appear to be shared by herbaceous and woody plants. However, the dormancy development during overwintering brings new players in the molecular control of seasonal cold acclimation of woody perennials.  相似文献   

5.
Cold acclimation of plants is a complex process involving a number of biochemical and physiological changes. The ability to cold acclimate is under genetic control. The development of freezing tolerance in woody plants is generally triggered by non-freezing low temperatures but can also be induced by mild drought or exogenous abscisic acid, as well as by short photoperiod. In nature, the extreme freezing tolerance of woody plants is achieved during sequential stages of cold acclimation the first of which is initiated by short photoperiods and non-freezing low temperatures, and the second by freezing temperatures. Although recent breakthroughs have increased our knowledge on the physiological molecular basis of freezing tolerance in herbaceous species, which acclimate primarily in response to non-freezing low temperatures, very little is known about cold acclimation of woody plants. This article attempts to review our current understanding of the physiological aspects that underline cold acclimation in woody plants.  相似文献   

6.
7.
8.
Physiological and molecular changes in plants grown at low temperatures   总被引:5,自引:0,他引:5  
Theocharis A  Clément C  Barka EA 《Planta》2012,235(6):1091-1105
  相似文献   

9.
10.
Arabidopsis plants show an increase in freezing tolerance in response to exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In the present study, we evaluated the physiological and morphological responses of various Arabidopsis ecotypes to continuous growth under chilling (14°C) and cold (6°C) temperatures and evaluated their basal freezing tolerance levels. Seedlings of Arabidopsis plants were extremely sensitive to low growth temperatures: the hypocotyls and petioles were much longer and the angles of the second pair of true leaves were much greater in plants grown at 14°C than in those grown at 22°C, whereas just intermediate responses were observed under the cold temperature of 6°C. Flowering time was also markedly delayed at low growth temperatures and, interestingly, lower growth temperatures were accompanied by longer inflorescences. Other marked responses to low temperatures were changes in pigmentation, which appeared to be both ecotype specific and temperature dependent and resulted in various visual phenotypes such as chlorosis, necrosis or enhanced accumulation of anthocyanins. The observed decreases in chlorophyll contents and accumulation of anthocyanins were much more prominent in plants grown at 6°C than in those grown at 14°C. Among the various ecotypes tested, Mt‐0 plants markedly accumulated the highest levels of anthocyanins upon growth at 6°C. Freezing tolerance examination revealed that among 10 ecotypes tested, only C24 plants were significantly more sensitive to subzero temperatures. In conclusion, Arabidopsis ecotypes responded differentially to cold (6°C), chilling (14°C) and freezing temperatures, with specific ecotypes being more sensitive in particular traits to each low temperature.  相似文献   

11.
12.

Background  

Cold acclimation is the process by which plants adapt to the low, non freezing temperatures that naturally occur during late autumn or early winter. This process enables the plants to resist the freezing temperatures of winter. Temperatures similar to those associated with cold acclimation are also used by the fruit industry to delay fruit ripening in peaches. However, peaches that are subjected to long periods of cold storage may develop chilling injury symptoms (woolliness and internal breakdown). In order to better understand the relationship between cold acclimation and chilling injury in peaches, we isolated and functionally characterized cold-regulated promoters from cold-inducible genes identified by digitally analyzing a large EST dataset.  相似文献   

13.
14.
植物冷驯化相关信号机制   总被引:5,自引:0,他引:5  
植物经过非致死温度的处理可以获得更强的抗冷能力叫做冷驯化,主要包括寒驯化和冻驯化 .在冷驯化过程中,质膜首先感受冷信号,调节胞质中IP3的含量,诱导胞质Ca2+浓度的升高,从而激活CBF基因的表达.至今已经克隆了大量的冷调控基因,组成了复杂的信号传导网络,其中ICE1-CBF-COR通路在植物的冷驯化过程中起到重要的作用.ICE1基因编码一个MYB类型的碱性螺旋 环-螺旋(bHLH)转录因子,在上游调节CBF和 其它转录因子的表达,提高抗冷性. HOS1蛋白通过泛素化介导的蛋白降解负调控ICE1,另外,CBF还通过转录的自我调控保持恰当的表达水平.基因的分析研究证明,RNA修饰和核质转运在植物的抗冷过程中也具有重要作用.在不依赖于CBF的途径中,转录因子HOS9和HOS10在调节抗冷有关基因的表达和提高抗冷能力方面具有至关重要的作用.  相似文献   

15.
Many plants, including Arabidopsis , increase their freezing tolerance in response to low, non-freezing temperatures. This process is known as cold acclimation and involves many complex biochemical changes at the level of the metabolome. Our goal was to examine the effects of cold acclimation on the metabolome using a non-targeted metabolic fingerprinting approach. Multivariate data analyses indicate that, in Arabidopsis, a global reprogramming of metabolism occurs as a result of cold acclimation. By measuring an entire spectrum of putative metabolites based on mass-to-charge ( m / z ) ratios, vs. an individual or group of metabolite(s), a comprehensive, unbiased assessment of metabolic processes relative to cold acclimation was determined. Whereas leaves shifted to low temperature present metabolic profiles that are constantly changing, leaves developed at low temperature demonstrate a stable complement of components. Although it appears that some metabolic networks are modulated by the environment, others require development under low-temperature conditions for adjustment. Understanding how metabolism as a whole is regulated allows the integration of cellular, physiological and ecological attributes in a biological system, a necessity if complex traits, such as freezing tolerance, are to be modified by breeding or genetic manipulation.  相似文献   

16.
17.
The freezing tolerance or cold acclimation of plants is enhanced over a period of time by temperatures below 10°C and by a short photoperiod in certain species of trees and grasses. During this process, freezing tolerance increases 2–8°C in spring annuals, 10–30°C in winter annuals, and 20–200°C in tree species. Gene upregulation and downregulation have been demonstrated to be involved in response to environmental cues such as low temperature. Evidence suggests ABA can substitute for the low temperature stimulus, provided there is also an adequate supply of sugars. Evidence also suggests there may be ABA-dependent and ABA-independent pathways involved in the acclimation process. This review summarizes the role of ABA in cold acclimation from both a historical and recent perspective. It is concluded that it is highly unlikely that ABA regulates all the genes associated with cold acclimation; however, it definitely regulates many of the genes associated with an increase in freezing tolerance.  相似文献   

18.
Cold comfort farm: the acclimation of plants to freezing temperatures   总被引:24,自引:1,他引:23  
  相似文献   

19.
The scarcity of C4 plants in cool climates is usually attributed to their lower photosynthetic efficiency than C3 species at low temperatures. However, a lower freezing resistance may also decrease the competitive advantage of C4 plants by reducing canopy duration, especially in continental steppe grasslands, where a short, hot growing season is bracketed by frost events. This paper reports an experimental test of the hypothesis that cold acclimation is negligible in C4 grasses, leading to greater frost damage than in C3 species. The experiments exposed six C3 and three C4 Mongolian steppe grasses to 20 d chilling or control pre-treatments, followed by a high-light freezing event. Leaf resistance to freezing injury was independent of photosynthetic type. Three C3 species showed constitutive freezing resistance characterized by <20% leaf mortality, associated with high photosynthetic carbon fixation and electron transport rates and low leaf osmotic potential. One freezing-sensitive C4 species showed the expected pattern of chilling-induced damage to photosynthesis and >95% leaf mortality after the freezing event. However, three C3 and two C4 species displayed a cold acclimation response, showing significant decreases in osmotic potential and photosynthesis after exposure to chilling, and a 30-72% reduction of leaf freezing injury. This result suggested that down-regulation of osmotic potential may be involved in the cold acclimation process, and demonstrated that there is no inherent barrier to the development of cold acclimation in C4 species from this ecosystem. Cold acclimation via osmoregulation represents a previously undescribed mechanism to explain the persistence of C4 plants in cool climates.  相似文献   

20.
对经低温驯化和未经低温驯化的磷脂酶Dδ(PLDδ)基因敲除突变体与野生型植株进行冻害胁迫处理后,比较2种基因型植株的抗冻性。结果发现,经低温驯化的PLDδ敲除突变体的抗冻性明显低于野生型,而未经低温驯化的PLD礅除突变体与野生型的抗冻性没有显著差异,表明PLDδ参与植物的低温驯化过程。对PLDδ的作用途径进行分析,发现PLDδ在低温驯化过程中不参与抗氧化酶活性的调节,对脯氨酸和可溶性糖的积累起负调节作用,但是参与低温信号转导物质ABA诱导抗冻性的过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号