首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Cold acclimation of plants is a complex process involving a number of biochemical and physiological changes. The ability to cold acclimate is under genetic control. The development of freezing tolerance in woody plants is generally triggered by non-freezing low temperatures but can also be induced by mild drought or exogenous abscisic acid, as well as by short photoperiod. In nature, the extreme freezing tolerance of woody plants is achieved during sequential stages of cold acclimation the first of which is initiated by short photoperiods and non-freezing low temperatures, and the second by freezing temperatures. Although recent breakthroughs have increased our knowledge on the physiological molecular basis of freezing tolerance in herbaceous species, which acclimate primarily in response to non-freezing low temperatures, very little is known about cold acclimation of woody plants. This article attempts to review our current understanding of the physiological aspects that underline cold acclimation in woody plants.  相似文献   

2.
3.
4.
5.
Woody plants in the temperate and boreal zone undergo annual cycle of growth and dormancy under seasonal changes. Growth cessation and dormancy induction in autumn are prerequisites for the development of substantial cold hardiness in winter. During evolution, woody plants have developed different ecotypes that are closely adapted to the local climatic conditions. In this study, we employed distinct photoperiodic ecotypes of silver birch (Betula pendula Roth) to elucidate differences in these adaptive responses under seasonal changes. In all ecotypes, short day photoperiod (SD) initiated growth cessation and dormancy development, and induced cold acclimation. Subsequent low temperature (LT) exposure significantly enhanced freezing tolerance but removed bud dormancy. Our results suggested that dormancy and freezing tolerance might partially overlap under SD, but these two processes were regulated by different mechanisms and pathways under LT. Endogenous abscisic acid (ABA) levels were also altered under seasonal changes; the ABA level was low during the growing season, then increased in autumn, and decreased in winter. Compared with the southern ecotype, the northern ecotype was more responsive to seasonal changes, resulting in earlier growth cessation, cold acclimation and dormancy development in autumn, higher freezing tolerance and faster dormancy release in winter, and earlier bud flush and growth initiation in spring. In addition, although there was no significant ecotypic difference in ABA level during growing season, the rates and degrees of ABA alterations were different between the ecotypes in autumn and winter, and could be related to ecotypic differences in dormancy and freezing tolerance.  相似文献   

6.
Cold comfort farm: the acclimation of plants to freezing temperatures   总被引:24,自引:1,他引:23  
  相似文献   

7.
Plants require substantial resistance against freezing and pathogens for overwintering. These two traits are acquired through cold acclimation. In contrast to freezing tolerance, molecular basis of disease resistance acquired through cold acclimation is poorly understood. Recent studies have suggested that pathogenesis-related (PR) proteins that are secreted into the apoplast during cold acclimation are responsible for the disease resistance. Interestingly, some of the cold-induced PR proteins display both antifungal and antifreeze activities, suggesting a dual function in protecting plants from overwintering stresses. The signaling pathway for cold-induced disease resistance is currently unknown but can be independent of pathogen-induced defense mechanisms.  相似文献   

8.
Freezing exposure releases bud dormancy in Betula pubescens and B. pendula   总被引:5,自引:0,他引:5  
Bud dormancy in woody plants is released by long-term exposure to non-freezing chilling temperatures, whereas freezing temperatures have been considered to have little or no effect. However, the present results demonstrate that short-term exposure to freezing can release bud dormancy in Betula pubescens (Ehrh.) and B. pendula (Roth). Short-term freezing during the dormancy induction phase improved the release of bud dormancy only if an adequate level of dormancy had been reached. In fully dormant or chilled plants both the percentage and the speed of bud-burst increased, the more so the lower the temperature. Our results rule out the possibility that endogenous abscisic acid could be directly involved in the physiological control of bud dormancy release. The fast, easily applicable method presented here for bud dormancy release could further investigations into the biochemical and biophysical background to the process. The mechanisms of bud dormancy release and its relationship to cold acclimation are discussed in the light of these results, as also are the implications of the findings for modelling of bud dormancy.  相似文献   

9.
Molecular investigation of the process of cold acclimation in woody plants has been limited by the superimposition of dormancy-related events on the process of cold tolerance development. To address this limitation, we have used the grape Vitis labruscana L. ev. Concord to develop a system in which the developmental programme of dormancy can be induced seperately from cold acclimation. Using this system we have characterized differential accumulation of several proteins in grape buds during the normally superimposed endodormancy and cold acclimation programmes, and in buds which have entered only the endodormancy programme. A set of 47 kD proteins accumulated during endodormancy without cold acclimation to a level similar to that found in endodormant and cold-acclimated buds, but without any associated increase in bud cold-acclimation level. However, a 27 kD LEA-like protein accumulated only in cold acclimated buds. We conclude that expression of the 47 kD glycoprotein is endodormancy-related, but is not strictly related to the development of cold acclimation, while the 27 kD protein appears to be more specific to cold acclimation. In addition to strengthening the association of LEA-like proteins with cold acclimation, this system allows more specific assessment of cold acclimation-associated phenomena in overwintering buds.  相似文献   

10.
Involvement of CBF transcription factors in winter hardiness in birch   总被引:8,自引:0,他引:8  
Welling A  Palva ET 《Plant physiology》2008,147(3):1199-1211
  相似文献   

11.
12.
13.
In many woody plants photoperiod signals the initiation of dormancy and cold acclimation. The photoperiod-specific physiological and molecular mechanisms have remained uncharacterised. The role of abscisic acid (ABA) and dehydrins in photope-riod-induced dormancy and freezing tolerance was investigated in birch, Betula pubescens Ehrh. The experiments were designed to investigate if development of dormancy and freezing tolerance under long-day (LD) and short-day (SD) conditions could be affected by manipulation of the endogenous ABA content, and if accumulation of dehydrin-like proteins was correlated with SD and/or the water content of the buds. Experimentally, the internal ABA content was increased by ABA application and by water stress treatment under LD, and decreased by blocking the synthesis of ABA with fluridone under SD. Additionally, high humidity (95% RH) was applied to establish if accidental water stress was involved in SD. ABA content was monitored by gas chromatography-mass spectrometry with selective ion monitoring (SIM). Short days induced a transient increase in ABA content, which was absent in 95% RH, whereas fluridone treatment decreased ABA. Short days induced a typical pattern of bud desiccation and growth cessation regardless of the treatment, and improved freezing tolerance except in the fluridone treatment. ABA content of the buds was significantly increased after spraying ABA on leaves and after water stress, treatments that did not induce cessation of growth and dormancy, but improved freezing tolerance. In addition to several constitutively produced dehydrins, two SD-specific proteins of molecular masses 34 and 36 kDa were found. Photoperiod- and experimentally-induced alterations in ABA contents affected freezing tolerance but not cessation of growth and dormancy. Therefore, involvement of ABA in the photoperiodic control of cold acclimation is more direct than in growth cessation and dormancy. As the typical desiccation pattern of the buds was found in all SD plants, and was not directly related to ABA content or to freezing tolerance, this pattern characterises the onset of photo-period-induced growth cessation and dormancy. The results provide evidence for the existence of various constitutively and two photoperiod-induced dehydrins in buds of birch, and reveal characteristics of dormancy and freezing tolerance that may facilitate further investigations of photoperiodic control of growth in trees.  相似文献   

14.
Plants adapt to freezing stress through cold acclimation, which is induced by nonfreezing low temperatures and accompanied by growth arrest. A later increase in temperature after cold acclimation leads to rapid loss of freezing tolerance and growth resumption, a process called deacclimation. Appropriate regulation of the trade-off between freezing tolerance and growth is necessary for efficient plant development in a changing environment. The cell wall, which mainly consists of polysaccharide polymers, is involved in both freezing tolerance and growth. Still, it is unclear how the balance between freezing tolerance and growth is affected during cold acclimation and deacclimation by the changes in cell wall structure and what role is played by its monosaccharide composition. Therefore, to elucidate the regulatory mechanisms controlling freezing tolerance and growth during cold acclimation and deacclimation, we investigated cell wall changes in detail by sequential fractionation and monosaccharide composition analysis in the model plant Arabidopsis thaliana, for which a plethora of information and mutant lines are available. We found that arabinogalactan proteins and pectic galactan changed in close coordination with changes in freezing tolerance and growth during cold acclimation and deacclimation. On the other hand, arabinan and xyloglucan did not return to nonacclimation levels after deacclimation but stabilized at cold acclimation levels. This indicates that deacclimation does not completely restore cell wall composition to the nonacclimated state but rather changes it to a specific novel composition that is probably a consequence of the loss of freezing tolerance and provides conditions for growth resumption.  相似文献   

15.
To investigate the molecular mechanisms controlling the process of cold acclimation and to identify genes involved in plant freezing tolerance, mutations that impaired the cold acclimation capability of Arabidopsis thaliana (L.) Heynh. were screened for. A new mutation, frs1 (freezing sensitive 1), that reduced both the constitutive freezing tolerance as well as the freezing tolerance of Arabidopsis after cold acclimation was characterized. This mutation also produced a wilty phenotype and excessive water loss. Plants with the frs1 mutation recovered their wild-type phenotype, their capability to tolerate freezing temperatures and their capability to retain water after an exogenous abscisic acid (ABA) treatment. Measurements of ABA revealed that frs1 mutants were ABA deficient, and complementation tests indicated that frs1 mutation was a new allele of the ABA3 locus showing that a mutation in this locus leads to an impairment of freezing tolerance. These results constitute the first report showing that a mutation in ABA3 leads to an impairment of freezing tolerance, and not only strengthen the conclusion that ABA is required for full development of freezing tolerance in cold-acclimated plants, but also demonstrate that ABA mediates the constitutive freezing tolerance of Arabidopsis. Gene expression in frs1 mutants was altered in response to dehydration, suggesting that freezing tolerance in Arabidopsis depends on ABA-regulated proteins that allow plants to survive the challenges imposed by subzero temperatures, mainly freeze-induced cellular dehydration. Received: 16 December 1999 / Accepted: 31 March 2000  相似文献   

16.
The effect of variable autumn temperatures in combination with decreasing irradiance and daylength on photosynthesis, growth cessation and freezing tolerance was investigated in northern‐ and southern‐adapted populations of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense) intended for use in regions at northern high latitudes. Plants were subjected to three different acclimation temperatures; 12, 6 and 9/3°C (day/night) for 4 weeks, followed by 1 week of cold acclimation at 2°C under natural light conditions. This experimental setup was repeated at three different periods during autumn with decreasing sums of irradiance and daylengths. Photoacclimation, leaf elongation and freezing tolerance were studied. The results showed that plants cold acclimated during the period with lowest irradiance and shortest day had lowest freezing tolerance, lowest photosynthetic activity, longest leaves and least biomass production. Higher acclimation temperature (12°C) resulted in lower freezing tolerance, lower photosynthetic activity, faster leaf elongation rate and higher biomass compared with the other temperatures. Photochemical mechanisms were predominant in photoacclimation. The northern‐adapted populations had a better freezing tolerance than the southern‐adapted except when grown during the late autumn period and at the highest temperature; then there were no differences between the populations. Our results indicate that the projected climate change in the north may reduce freezing tolerance in grasses as acclimation will take place at higher temperatures and shorter daylengths with lower irradiance.  相似文献   

17.
Salix paraplesia was used as an experimental model to investigate the effect of short day photoperiod (SD) and low temperature (LT) on development of freezing tolerance and on endogenous abscisic acid (ABA) contents. We characterized differences in SD and LT-induced cold acclimation in three ecotypes from different altitudes. The results demonstrated that cold acclimation could be triggered by exposing the plants to SD or LT alone, and that a combination of the different treatments had an additive effect on freezing tolerance in all ecotypes studied. However, the high altitudinal ecotype was more responsive to SD and LT than the low altitudinal ecotype. Development of freezing tolerance induced by SD and LT was accompanied by changes in ABA contents which were ecotype-dependent. Although the stem had higher initial freezing tolerance, the leaves developed freezing tolerance more quickly than the stem and thus leaves may provide an interesting experimental system for physiological and molecular studies of cold acclimation in woody plants.  相似文献   

18.
抗寒性是植物适应和忍耐低温胁迫的能力,是复杂的多基因特征,其研究历史悠久。近些年的研究为理解植物如何响应外界低温并获得抗寒性提供了重要线索。本文概述了低温下木本植物冰核及其传播、深度过冷却与玻璃化形成、低温锻炼的生理学与遗传调控、低温锻炼的分子生物学与遗传工程等方面的进展,以期为人们在维持重要作物高产的同时提高其抗寒性提供参考。  相似文献   

19.
Nine species of insects from three different geographical regions of Canada were examined for freezing tolerance, supercooling capacity, water content and changes in biochemical characteristics during acclimation to subzero temperatures. Six species proved to be freezing tolerant, the remaining three freezing susceptible. The majority of species in each category conformed to the generally recognized profiles of overwintering response. There were enough specific variations within each category, however, to indicate that cold tolerance mechanisms have evolved independently on a number of different occassions. Specific physiological and biochemical anomalies in these insects were discussed.  相似文献   

20.
植物抗寒及其基因表达研究进展   总被引:6,自引:0,他引:6  
曹琴  孔维府  温鹏飞 《生态学报》2004,24(4):806-811
植物经过逐渐降低的温度从而提高抗寒能力 ,这个过程被人们称为低温驯化。植物低温驯化过程是一个复杂的生理、生化和能量代谢变化过程 ,这些变化主要包括膜系统的稳定性、可溶性蛋白的积累和小分子渗透物质 ,比如脯氨酸、糖等 ,这些变化中的一些是植物抗寒必需的 ,而另外一些变化不是必需的。主要对冷害和低温生理生化变化、低温诱导表达基因的功能和作用、低温驯化的调节机制及其信号转导方面进行了综述。通过差别筛选 c DNA文库的方法已经鉴定了许多低温诱导表达、进而提高植物抗寒能力的基因 ,其中有脱水素、COR基因和 CBF1转录因子等。低温信号的感受、转导和调节表达是低温驯化的关键环节 ,低温信号的转导过程与干旱胁迫之间具有一定的交叉 ,这为利用 ABA等来提高植物抗寒能力成为可能 ,相信不久的将来人们可以通过提高植物抗寒能力从而增加经济产量成为现实。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号