首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
木香薷腺毛形态结构发生发育规律的研究   总被引:1,自引:0,他引:1  
采用常规石蜡切片法及扫描电镜技术对木香薷(Elsholtzia stauntoni Benth)腺毛发生发育及其规律进行了研究。结果表明:木香薷表皮上主要有两种表皮毛:无分泌细胞的表皮毛与有分泌细胞的腺毛。前者包括单细胞乳头状毛、2~3细胞管状毛、分枝状毛及多细胞管状毛;后者包括头状腺毛与盾状腺毛。成熟头状腺毛头部由1、2或4个分泌细胞构成,头部呈圆球形或半圆球形;成熟盾状腺毛头部由8~12个分泌细胞构成,分泌细胞横向扩展形成盾状头部。木香薷腺毛主要在茎端幼叶处大量发生,从茎端第一对幼叶处开始产生;从幼叶期到成熟期均有腺毛发生,大部分腺毛在幼叶期发生发育,只有极少部分在叶的成熟期进行发生发育。  相似文献   

2.
CORSI  G.; BOTTEGA  S. 《Annals of botany》1999,84(5):657-664
The structure, site and histochemistry of glandular hairs onthe vegetative and reproductive parts ofSalvia officinalis wereinvestigated by UV and conventional light microscopy and byscanning electron microscopy. Five distinct types of glandularhair (one peltate and four capitate) with different sites, secretorymodes and secretions, were identified, and a functional rolepostulated for each type. All the hair types show mixed secretions,i.e., hydrophilic and lipophilic, except type I capitate hairs,which have hydrophilic secretions only. In peltate hairs andin type II capitate hairs hydrophilic secretion prevails; inthe remaining types, lipophilic secretion dominates. The manner,time and role of erection of peltate hairs on the reproductiveorgans and the role of non-glandular hairs are also considered.Copyright 1999 Annals of Botany Company Salvia officinalis, Labiatae, rising of peltate hairs, capitate hairs, secretion, plant/insect interaction.  相似文献   

3.
Micromorphological investigation of the types, dimensions and distribution of characteristic trichomes in leaves and stems in Teucrium L. species (T. arduini L., T. chamaedrys L., T. flavum L., T. montanum L., T. polium L., and T. scordium L. subsp. scordioides Schreb.) distributed in Croatia was carried out as part of the taxonomical study of the genus Teucrium. Secretory types of hairs, peltate and capitate hairs were observed on the epidermis of stems and leaves of all investigated species. Non-secretory, acicular hairs were almost completely lacking on stems of T. scordium subsp. scordioides. Flagelliform hairs were not found in T. flavum and T. polium. Cladose hairs were present only in T. polium. The largest micromorphological variability was established between wild and cultivated samples of T. arduini and T. scordium subsp. scordioides, while cultivated and wild specimens of T. polium were almost identical. Differences were primarily observed in trichome dimensions and much less in micromorphological features.  相似文献   

4.
The types of glandular trichomes, their ontogeny and patternof distribution on the vegetative and reproductive organs ofLeonotis leonurus at different stages of development, are studiedby light and scanning electron microscopy. Two morphologicallydistinct types of glandular trichomes (peltate and capitate)are described. Peltate trichomes, at the time of secretion,are characterized by a short stalk, which is connected witha large spherical head composed of eight cells in a single layer.Capitate trichomes can be divided into various types. Generally,they consist of a four-celled head supported by one or threestalk cells. The two kinds of trichomes differ in the secretionprocess. In the peltate trichomes, the secretory product seemsto remain accumulated in a subcuticular space, unless an externalfactor damages it. In the capitate trichomes, this product probablybecomes released through micropores. On the leaves peltate andcapitate trichomes are abundant, while on the flowers only thepeltate trichomes are numerous and the capitate are rare orabsent.Copyright 1995, 1999 Academic Press Leonotis leonurus R. Br., lion's ear, lion's tail, Lamiaceæ, glandular trichomes, morphology, ontogeny  相似文献   

5.
Muravnik LE 《Tsitologiia》2008,50(7):636-642
Four types of glandular and non-glandular trichomes of pericarp in four Juglans species (J. ailanthifolia, J. cordiformis, J. mandshurica and J. regia) from Juglandaceae were studied by scanning electron microscopy, fluorescent light microscopy and histochemistry. The capitate trichomes on short stalk, the capitate trichomes on long stalk and the peltate trichomes belong to glandular trichomes; the simple hairs concern to non-glandular trichomes. The investigated species differ one from another in dimensions and distribution oftrichomes as well as the chemical content and the mechanism of secretion. The fluorescent markers and histochemical tests show the presence of flavonoids, tannins and polyphenols in trichomes on short and long stalk. In peltate trichomes the flavonoids and tannins were found in lesser quantity and the polyphenols are absent. In simple hairs the phenolic substances have not been recognized. It has been come out with the suggestion about a functional role of each type of trichomes.  相似文献   

6.
羽叶薰衣草表皮毛的发育解剖学研究   总被引:1,自引:0,他引:1  
对羽叶薰衣草(LavandulapinnataL.)茎和叶上两种表皮毛(腺毛和非腺毛)发育的解剖学观察表明,两者的发生都源于茎或叶的原表皮细胞,但外部形态、发育过程及功能明显不同。腺毛有头状腺毛和盾状腺毛两种类型,均由1个基细胞、1个柄细胞和头部细胞构成。头状腺毛的头部只有1个或2个分泌细胞,盾状腺毛由8个分泌细胞构成头部。非腺毛由3-20个细胞组成,可分为三种类型:单列不分枝、二叉分枝和三叉及三叉以上多分枝的树状分枝。非腺毛的顶部细胞由基部到顶部逐渐变细,先端成尖形。腺毛发育由原表皮细胞经两次平周分裂形成,由于柄细胞和头部细胞所处的分化状态不同而发育成两类腺毛。非腺毛由非腺毛原始细胞经二次或多次平周分裂和不均等分裂,再发育成数个至二十多个子细胞。  相似文献   

7.
Ziziphora L. is represented by 5 species and 2 subspecies in the flora of Turkey: Z. clinopodioides, Z. capitata, Z. persica, Z. tenuior, Z. taurica subsp. taurica, Z. taurica subsp. cleonioides. It is difficult to distinguish between some Ziziphora taxa because of their morphological similarities. In this study, the leaf and calyx trichomes of Ziziphora taxa in Turkey were studied in order to assess anatomical variations that may serve as distinguishing characters. Their micromorphological features were surveyed by scanning electron microscopy (SEM) and light microscopy (LM). Trichomes on leaves and calyx can be divided into two general types: non‐glandular trichomes and glandular (secretory) trichomes. The non‐ glandular trichomes are simple, acicular or curved with cuticular micropapillae. They usually consist of one or more additional cells. The glandular trichomes are divided into two types: peltate and capitate and Ziziphora taxa can easily be distinguished by presence/absence, density and types of glandular trichomes on leaves and calyx. The peltate trichomes consist of 12 or 18 secretory head cells in a single disc; four or six central cells surrounded by eight or twelve peripheral ones. Peltate trichomes are absent on the adaxial leaf surface of Z. capitata and Z. persica. Two types of capitate trichomes are present in Ziziphora. The capitate trichomes are only absent on the calyx surface of Z. persica. In addition, the trichome micromorphology provides some support for separating the two subspecies of Z. taurica. In conclusion, Ziziphora taxa can easily be distinguished by cell number, cell shape presence/absence and density of the glandular trichomes on leaves and calyx.  相似文献   

8.
This study characterises the micromorphology, ultrastructure and main chemical constituents of the foliar glandular trichomes of Ocimum obovatum using light and electron microscopy and a variety of histochemical tests. Two types of glandular trichomes occur on the leaves: large peltate and small capitate. The head of each peltate trichome is made up of four broad head cells in one layer. The head of each capitate trichome is composed of two broad head cells in one layer (type I) or a single oval head cell (type II, rare). In peltate heads, secretory materials are gradually transported to the subcuticular space via fracture in the four sutures at the connecting walls of the head cells. Release to the head periphery occurs through opposite fracture in the four sutures in the head cuticle. In type I capitate trichomes, release of the secretions to the subcuticular space occurs via a pore between the two head cells, and release to the head periphery occurs through the opposite pore in the head cuticle. In type II capitate trichomes, the secreted material is released from the head cell through a ruptured particular squared area at the central part of the head cuticle. These secretion modes are reported for the first time in the family Lamiaceae. Histochemical tests showed that the secretory materials in the glandular trichomes are mainly essential oils, lipophilic substances and polysaccharides. Large peltate trichomes contain a large quantity of these substances than the small capitate trichomes. Ultrastructural evidence suggests that the plastids produce numerous lipid droplets, and the numerous polysaccharide small vesicles are derived from Golgi bodies.  相似文献   

9.
为进行中药溪黄草基原植物的品种鉴定,采用光镜和电镜对线纹香茶菜(原变种)[Isodon lophanthoides var.lophanthoides]叶上腺毛的发育进行细胞学研究。结果表明,线纹香茶菜具有头状腺毛和盾状腺毛2种类型。头状腺毛无色透明,由1个基细胞、1个柄细胞和1或2个头部分泌细胞构成;盾状腺毛为红色,由1或2个基细胞、1个柄细胞和4~8个分泌细胞构成头部。2种腺毛均由原表皮细胞经两次平周分裂形成,后因柄细胞和头部细胞所处的分化状态不同而形成两类腺毛。2种腺毛超微结构表明,质体、高尔基体和粗面内质网为主要分泌物产生和运输的细胞器。当盾状腺毛成熟时,角质层下间隙充满了分泌物,其分泌物的性质很可能决定了线纹香茶菜腺毛的颜色。  相似文献   

10.
电镜观察表明:兰花鼠尾草(Salvia farinacea Benth.)的头状腺毛(capitate trichomes)和盾状腺毛(peltate trichomes)在超微结构方面存在明显不同,盾状腺毛的分泌细胞中占优势的细胞器是质体,而头状腺毛中是内质网和质体;成熟的盾状腺毛角质层下间隙明显,而头状腺毛不明显;盾状腺毛的柄细胞的侧壁出现完全的角质化现象,而头状腺毛则无;头状腺毛的基细胞液化程度比盾状腺毛的高。  相似文献   

11.
Two species of Melissa are currently present in Sardinia: Melissa officinalis L. and Melissa romana Mill . Our research can only count on a few supported evidences (as reported in Flora Italiana and Moris) and some notes on new stations in Sardinia that give us some information about morphology, distribution, bioecological, and ethnobotanical characteristics of both species. In this paper, we present the results of the research about morphological aspects of Mromana vs. Mofficinalis, and their essential oils in different stations at different phenological periods. Moreover, we compared the essential oil of Mromana with the one obtained from Mofficinalis growing in the few naturalized stations still present in Sardinia. The most evident morphological differences between the two entities are the long‐stalked capitate glandular trichomes, shorts and inclined capitate trichomes, and peltate hairs. The chemical composition of essential oil presents several significant differences between the species. In fact, oils show that in none of the phenological stages, M. romana recalls in its composition M. officinalis. Major distinctions are also evident between dry and fresh plants, and among essential oils distilled in different seasons.  相似文献   

12.
紫苏叶上有两种腺毛:盾状腺毛和头状腺毛。两者都具1个基细胞、1个柄细胞和头部。前者的头部可由1、2、4或8个分泌细胞组成,扩展成盾状;后者的头部由1、2或4个分泌细胞组成,聚成圆球状。两种腺毛的原始细胞都来源于原表皮细胞,经两次平周分裂产生基细胞、柄细胞和顶细胞。在腺毛后期的形态发生中,柄细胞的分化状态决定腺毛的类型。若柄细胞保持扁平状且处于分生状态时,其顶细胞将发育成盾状腺毛的头部;若柄细胞纵向引长并迅速液泡化时,其顶细胞将发育成头状腺毛的头部。  相似文献   

13.
Scanning electron microscopy of sage (Salvia officinalis L.) leaves confirmed the presence of two basic types of glandular trichomes consisting of a capitate stalked form containing a multicellular stalk and surmounted by a unicellular secretory head, and a capitate sessile form containing a unicellular stalk and unicellular, or multicellular, secretory head. In the latter type, secretory activity and filling of the subcuticular cavity may begin at virtually any stage of the division cycle affording fully developed glands containing from one to twelve cells in the secretory head. Gas liquid chromatographic analysis of the oil content of the most numerous gland species (capitate stalked, capitate sessile with one and with eight secretory cells) indicated only minor quantitative differences in essential oil composition. Thus, each gland type is capable of producing the four major monoterpene families (p-menthanes, pinanes, bornanes and thujanes) characteristic of sage.  相似文献   

14.
Leaves and flowers of four chemotypes of Origanum vulgare L.were examined for the main components of their essential oiland for the types and distribution of their glandular hairs.Two varieties have high phenol content, one thymol and the othercarvacrol, in their essential oils; one has a moderate thymolcontent and the fourth has a low phenol content and a high alcoholcontent. The percentage of essential oil and the number of peltatehairs were higher in the flowers than in the leaves, the highestbeing in the flowers of a chemotype with a high phenol (thymol)concentration. While there were no differences in structureof the peltate and two types of capitate hairs between chemotypes,the density of the peltate hairs varied and appeared to be correlatedwith the total essential oil content. Origanum vulgare L., essential oils, glandular hairs  相似文献   

15.
The morphology and distribution of leaf trichomes of Tetradenia riparia were studied using light and scanning microscopy. Three morphologically distinct types of trichomes were observed on T. riparia leaf surfaces: glandular capitate (short and long stalked), peltate and non-glandular. The glandular and non-glandular trichomes were present in abundance on both the adaxial and abaxial surfaces. Young leaves were densely covered with trichomes; however, the density of trichomes decreases progressively with leaf maturity. This suggests that the trichomes are established early in leaf differentiation and their density decreases with leaf development and age.  相似文献   

16.
The micromorphology of trichomes of the leaves of 17 taxa (including two varieties) of the genus Chelonopsis Miq. and of six species representing four additional genera (Bostrychanthera deflexa Benth., Colquhounia coccinea Wall. var. coccinea, Co. seguinii Vaniot. var. seguinii, Gomphostemma chinense Oliv. var. chinense, G. crinitum Wall. ex Benth. and Physostegia virginiana (L.) Benth.) was surveyed by light and scanning electron microscopy. Two basic types of trichomes can be identified: non-glandular and glandular trichomes. The non-glandular trichomes can be subdivided into two subtypes: simple unbranched and branched trichomes. Based on the cell number, simple unbranched trichomes are further divided into four shapes (unicellular, two-celled, three-celled, and more than three cells), whilst branched trichomes are separated into three shapes (biramous, stellate, and dendroid trichomes). The glandular trichomes can in turn be subdivided into four subtypes: subsessile, capitate, clavate, and sunken. Non-glandular trichomes with two cells (NGTW) and subsessile glandular trichomes (GSU) are most widespread in all taxa examined. The indumentum shows considerable variation among different sections or species. Consequently, trichome micromorphology and distribution have high taxonomic value for Chelonopsis at both infrageneric and interspecific levels. The presence of capitate glandular trichomes (GCA) provides an additional morphological character to clarify the boundaries between subgenus Chelonopsis and Aequidens Wu and Li. Within subgenus Aequidens, non-glandular trichomes with more than three cells (NGMT) and clavate glandular trichomes (GCL) are important characters for sectional division between sect. Aequidens Wu and Li and sect. Microphyllum Wu and Li. Again, three forms of three-celled trichomes can be used as a distinctive taxonomic character at specific level between C. albiflora Pax et K. Hoffm. ex Limpr., C. forrestii J. Anthony, and C. souliei (Bonati) Merr. in sect. Aequidens. This study supports Wu's delimitation of subgenus and sections and the subsequent review work by Xiang et al. Additionally, distribution of trichome types is correlated with the altitudinal distribution and habitats of some species in Chelonopsis.  相似文献   

17.
Sideritis italica (Mill.) Greuter et Burdet belongs to the Lamiaceae family and is endemic to Italy. The glandular trichomes (morphology, distribution, histochemistry, and ultrastructure) of the plant were studied for the first time, along with the chemical composition of the essential oils. Abundant non-glandular hairs and peltate (type A) and capitate (types B, C(1), and C(x)) glandular trichomes were observed both on the vegetative and reproductive organs. The histochemical procedures and the ultrastructural investigation enabled specific location of the main site of essential oil production mainly in type-A peltate hairs. Particular emphasis is given to the release mechanism of the secreted material in all of the types of glands, and the potential taxonomic value of the indumentum in the Lamiaceae family is briefly discussed. Essential oils were hydrodistilled from flowering aerial parts of S. italica, and 136 compounds (112 in flowerheads, 79 in vegetative parts) were identified. The quantitative prevalence of diterpenoids (43.4% in flowerheads and 22.3% in vegetative parts) was the most significant characteristic of the essential oil of S. italica that could be classified as a diterpene-rich essential oil according to the classification of Kirimer.  相似文献   

18.
冬凌草腺毛的形态学及组织化学研究   总被引:1,自引:0,他引:1  
利用光学显微镜对药用植物冬凌草地上部分腺毛的形态、分布和组织化学进行了研究。结果表明:(1)冬凌草的叶表皮有3种形态显著不同的毛,即非腺毛、盾状腺毛和头状腺毛;盾状腺毛和头状腺毛均具1个基细胞、1个柄细胞和头部;成熟的盾状腺毛的头部一般由4个分泌细胞组成,而头状腺毛头部由2个分泌细胞组成。(2)组织化学鉴定结果显示:2种腺毛中均含有黄酮类成分,盾状腺毛中还含有单萜、倍半萜等萜类成分;冬凌草甲素可能只存在于盾状腺毛中,但需要更直接的证据证明。研究认为,高密度的盾状腺毛可以作为筛选冬凌草高甲素含量品种的一项重要依据。  相似文献   

19.
Sideritis syriaca ssp. syriaca is a taxon with a low essential oil content. Its leaves bear glandular trichomes of two types: long hairs with a 4-celled head, a 4-celled stalk and a 4-celled foot (reported for the first time in Lamiaceae) and short hairs with a 4–celled head, a unicellular stalk and a unicellular foot. The second type is considered intermediate between the capitate and peltate hairs, common in Lamiaceae, but found in S. syriaca ssp. syriaca. The ontogeny of the trichome types is described. The possible significance of the glandular trichome structure to Lamiaceae systematics is further discussed.  相似文献   

20.
The genus Cyclotrichium (Boiss.) Manden. & Scheng. is represented by six species in Turkey: C. glabrescens, C. leucotrichum, C. longiflorum, C. niveum, C. origanifolium and C. stamineum. They are aromatic perennial subshrubs used as spices or herbal teas in traditional Turkish medicine. The leaf anatomy and tomentum morphology of leaves and calyces of Cyclotrichium species in Turkey was investigated by scanning electron microscopy (SEM) and light microscopy (LM). The investigated species have equifacial (C. niveum, C. origanifolium) or bifacial leaves (C. glabressens, C. leucotrichum, C. longiflorum, C. stamineum). All species have peltate and capitate glandular, and simple (all species) or branched (C. niveum) eglandular trichomes and diacytic stomata. Peltate trichomes consist of a basal cell embedded in the epidermis, a stalk cell, and a broad 12 (–13)‐celled secretory head arranged in two concentric circles. The capitate trichomes observed in Cyclotrichium can be grouped into five types, differing in structure and size. They consist of either a pear‐shaped or globose unicellular head and uni‐or bicellular stalk, or a bicellular head and bicellular stalk. The density of peltate, capitate and eglandular trichomes differs between species. Peltate trichomes are densely spaced only on the calyx and on the leaf surface of C. niveum and C. origanifolium and on the abaxial leaf surface of C. longiflorum and C. stamineum. The significance of trichome architecture for taxonomy in Cyclotrichium and Lamiaceae in general is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号