首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial colonization is a secondary feature of many lung disorders associated with elevated cytokine levels and increased leukocyte recruitment. We hypothesized that, alongside macrophages, the epithelium would be an important source of these mediators. We investigated the effect of LPS (0, 10, 100, and 1000 ng/ml LPS, up to 24 h) on primary human lung macrophages and alveolar type II epithelial cells (ATII; isolated from resected lung tissue). Although macrophages produced higher levels of the cytokines TNF-alpha and IL-1beta (p < 0.0001), ATII cells produced higher levels of chemokines MCP-1, IL-8, and growth-related oncogene alpha (p < 0.001), in a time- and concentration-dependent manner. Macrophage (but not ATII cell) responses to LPS required activation of ERK1/2 and p38 MAPK signaling cascades; phosphorylated ERK1/2 was constitutively up-regulated in ATII cells. Blocking Abs to TNF-alpha and IL-1beta during LPS exposure showed that ATII cell (not macrophage) MCP-1 release depended on the autocrine effects of IL-1beta and TNF-alpha (p < 0.003, 24 h). ATII cell release of IL-6 depended on autocrine effects of TNF-alpha (p < 0.006, 24 h). Macrophage IL-6 release was most effectively inhibited when both TNF-alpha and IL-1beta were blocked (p < 0.03, 24 h). Conditioned media from ATII cells stimulated more leukocyte migration in vitro than conditioned media from macrophages (p < 0.0002). These results show differential activation of cytokine and chemokine release by ATII cells and macrophages following LPS exposure. Activated alveolar epithelium is an important source of chemokines that orchestrate leukocyte migration to the peripheral lung; early release of TNF-alpha and IL-1beta by stimulated macrophages may contribute to alveolar epithelial cell activation and chemokine production.  相似文献   

2.
Recent evidence supports a role of Toll-like receptor (TLR) signaling in the development of atherosclerotic lesions. In this study, we tested whether TLR4 signaling promotes a proinflammatory phenotype in human and mouse arterial smooth muscle cells (SMC), characterized by increased cytokine and chemokine synthesis and increased TLR expression. Human arterial SMC were found to express mRNA encoding TLR4 and the TLR4-associated molecules MD-2 and CD14 but not TLR2 mRNA. Mouse aortic SMC, on the other hand, expressed both TLR2 and TLR4 mRNA constitutively. Human SMC derived from the coronary artery, but not those from the pulmonary artery, were found to express cell surface-associated CD14. Low concentrations (ng/ml) of Escherichia coli LPS, the prototypical TLR4 agonist, markedly stimulated extracellular regulated kinase 1/2 (ERK1/2) activity, induced release of monocyte-chemoattractant protein-1 (MCP-1) and interleukin (IL)-6, and stimulated IL-1alpha expression in human aortic SMC, and exogenous CD14 enhanced these effects. Expression of a dominant negative form of TLR4 in human SMC attenuated LPS-induced ERK1/2 and MCP-1 release. LPS was a potent inducer of NF-kappaB activity, ERK1/2 phosphorylation, MCP-1 release, and TLR2 mRNA expression in wild-type mice but not in TLR4-signaling deficient mouse aortic SMC. These studies show that TLR4 signaling promotes a proinflammatory phenotype in vascular smooth muscle cells (VSMC) and suggest that VSMC may potentially play an active role in vascular inflammation via the release of chemokines, proinflammatory cytokines, and increased expression of TLR2.  相似文献   

3.
A family of Toll-like receptor (TLR) mediates the cellular response to bacterial cell wall components; murine TLR2 and TLR4 recognize mycoplasmal lipopeptides (macrophage-activating lipopeptides, 2 kDa (MALP-2)) and LPS, respectively. Costimulation of mouse peritoneal macrophages with MALP-2 and LPS results in a marked increase in TNF-alpha production, showing the synergy between TLR2- and TLR4-mediated signaling pathways. Macrophages pretreated with LPS show hyporesponsiveness to the second LPS stimulation, termed LPS tolerance. The LPS tolerance has recently been shown to be primarily due to the down-regulation of surface expression of the TLR4-MD2 complex. When macrophages were treated with MALP-2, the cells showed hyporesponsiveness to the second MALP-2 stimulation, like LPS tolerance. Furthermore, macrophages pretreated with MALP-2 showed reduced production of TNF-alpha in response to LPS. LPS-induced activation of both NF-kappaB and c-Jun NH(2)-terminal kinase was severely impaired in MALP-2-pretreated cells. However, MALP-2-pretreated macrophages did not show any reduction in surface expression of the TLR4-MD2 complex. These findings indicate that LPS-induced LPS tolerance mainly occurs through the down-regulation of surface expression of the TLR4-MD2 complex; in contrast, MALP-2-induced LPS tolerance is due to modulation of the downstream cytoplasmic signaling pathways.  相似文献   

4.
Lactoferrin (LF) is a component of innate immunity and is known to interact with accessory molecules involved in the TLR4 pathway, including CD14 and LPS binding protein, suggesting that LF may activate components of the TLR4 pathway. In the present study, we have asked whether bovine LF (bLF)-induced macrophage activation is TLR4-dependent. Both bLF and LPS stimulated IL-6 production and CD40 expression in RAW 264.7 macrophages and in BALB/cJ peritoneal exudate macrophages. However, in macrophages from congenic TLR4(-/-) C.C3-Tlr4(lps-d) mice, CD40 was not expressed while IL-6 secretion was increased relative to wild-type cells. The signaling components NF-kappaB, p38, ERK and JNK were activated in RAW 264.7 cells and BALB/cJ macrophages after bLF or LPS stimulation, demonstrating that the TLR4-dependent bLF activation pathway utilizes signaling components common to LPS activation. In TLR4 deficient macrophages, bLF-induced activation of NF-kappaB, p38, ERK and JNK whereas LPS-induced cell signaling was absent. We conclude from these studies that bLF induces limited and defined macrophage activation and cell signaling events via TLR4-dependent and -independent mechanisms. bLF-induced CD40 expression was TLR4-dependent whereas bLF-induced IL-6 secretion was TLR4-independent, indicating potentially separate pathways for bLF mediated macrophage activation events in innate immunity.  相似文献   

5.
6.
7.
We developed a heterologous system to study the effect of mechanical deformation on alveolar epithelial cells. First, isolated primary rat alveolar type II (ATII) cells were plated onto silastic substrata coated with fibronectin and maintained in culture under conditions where they become alveolar type I-like (ATI) cells. This was followed by a second set of ATII cells labeled with the nontransferable, vital fluorescent stain 5-chloromethylfluorescein diacetate to distinguish them from ATI cells. By morphometric analysis, equibiaxial deformation (stretch) of the silastic substratum induced comparable changes in cell surface area for both ATII and ATI cells. Surfactant lipid secretion was measured using cells metabolically labeled with [(3)H]choline. In response to 21% tonic stretch for 15 min, ATII cells seeded with ATI cells secreted nearly threefold more surfactant lipid compared with ATII cells seeded alone. ATI cells did not secrete lipid in response to stretch. The enhanced lipid secretion by ATII plus ATI cocultures was inhibited by treatment with apyrase and adenosine deaminase, suggesting that ATP release by ATI cells enhanced surfactant lipid secretion at 21% stretch. This was confirmed using a luciferase assay where, in response to 21% stretch, ATI cells released fourfold more ATP than ATII cells. Because ATI cells release significantly more ATP at a lower level of stretch than ATII cells, this supports the hypothesis that ATI cells are mechanosensors in the lung and that paracrine stimulation of ATII cells by extracellular ATP released from ATI cells plays a role in regulating surfactant secretion.  相似文献   

8.
9.
Mycoplasma pneumoniae is a human pathogen causing respiratory infections that are also associated with serious exacerbations of chronic lung diseases. Membranes and lipoproteins from M. pneumoniae induced a 4-fold increase in arachidonic acid (AA) release from RAW264.7 and a 2-fold increase in AA release from primary human alveolar macrophages. The bacterial lipoprotein mimic and TLR2/1 agonist Pam3Cys and the TLR2/6 agonist MALP-2 produced effects similar to those elicited by M. pneumoniae in macrophages by inducing the phosphorylation of p38(MAPK) and p44/42(ERK1/2) MAP kinases and cyclooxygenase-2 (COX-2) expression. M. pneumoniae induced the generation of prostaglandins PGD(2) and PGE(2) from RAW264.7 cells and thromboxane B(2) (TXB(2)) from human alveolar macrophages. Anti-TLR2 antibody completely abolished M. pneumoniae-induced AA release and TNFα secretion from RAW264.7 cells and human alveolar macrophages. Disruption of the phosphorylation of p44/42(ERK1/2) or inactivation of cytosolic phospholipase A(2)α (cPLA(2)α) completely inhibited M. pneumoniae-induced AA release from macrophages. The minor pulmonary surfactant phospholipid, palmitoyl-oleoyl-phosphatidylglycerol (POPG), antagonized the proinflammatory actions of M. pneumoniae, Pam3Cys, and MALP-2 by reducing the production of AA metabolites from macrophages. The effect of POPG was specific, insofar as saturated PG, and saturated and unsaturated phosphatidylcholines did not have significant effect on M. pneumoniae-induced AA release. Collectively, these data demonstrate that M. pneumoniae stimulates the production of eicosanoids from macrophages through TLR2, and POPG suppresses this pathogen-induced response.  相似文献   

10.
Mycobacteria develop strategies to evade the host immune system. Among them, mycobacterial LAM or PIMs inhibit the expression of pro-inflammatory cytokines by activated macrophages. Here, using synthetic PIM analogues, we analyzed the mode of action of PIM anti-inflammatory effects. Synthetic PIM(1) isomer and PIM(2) mimetic potently inhibit TNF and IL-12 p40 expression induced by TLR2 or TLR4 pathways, but not by TLR9, in murine macrophages. We show inhibition of LPS binding to TLR4/MD2/CD14 expressing HEK cells by PIM(1) and PIM(2) analogues. More specifically, the binding of LPS to CD14 was inhibited by PIM(1) and PIM(2) analogues. CD14 was dispensable for PIM(1) and PIM(2) analogues functional inhibition of TLR2 agonists induced TNF, as shown in CD14-deficient macrophages. The use of rough-LPS, that stimulates TLR4 pathway independently of CD14, allowed to discriminate between CD14-dependent and CD14-independent anti-inflammatory effects of PIMs on LPS-induced macrophage responses. PIM(1) and PIM(2) analogues inhibited LPS-induced TNF release by a CD14-dependent pathway, while IL-12 p40 inhibition was CD14-independent, suggesting that PIMs have multifold inhibitory effects on the TLR4 signalling pathway.  相似文献   

11.
Monocyte chemoattractant protein-1 (MCP-1) influences monocyte migration into sites of inflammation. This study highlights the importance of cytosolic phospholipase A2 (cPLA2)-mediated reactive oxygen species (ROS) signaling processes in the regulation of MCP-1 release as a result of toll-like receptor (TLR) activation. In macrophages, activation of TLR9 induced MCP-1 and cPLA2-phosphorylated arachidonic acid (AA) release. Inhibition of cPLA2 blocked CpG-induced MCP-1 and AA release. Although CpG stimulates phosphorylation of ERK, p38 and JNK, only inhibition of the JNK signaling pathways attenuated MCP-1 release, suggesting that the TLR9-mediated MCP-1 release was dependent upon the JNK pathway. TLR9 activation also stimulated ROS generation, while inhibition of NADPH oxidases (Noxs) blocked CpG-induced MCP-1 release. The CpG treatment increased macrophage Nox1 mRNA level, however it had no effect on macrophage Nox2 mRNA level. Overall, these results suggest that CpG enhances ROS generation through cPLA2-dependent pathways, which results in MCP-1 release.  相似文献   

12.
Innate immune activation via Toll-like receptors (TLRs), although critical for host defense against infection, must be regulated to prevent sustained cell activation that can lead to cell death. Cells repeatedly stimulated with lipopolysaccharide (LPS) develop endotoxin tolerance making the cells hypo-responsive to additional TLR stimulation. We show here that DOK3 is a negative regulator of TLR signaling by limiting LPS-induced ERK activation and cytokine responses in macrophages. LPS induces ubiquitin-mediated degradation of DOK3 leading to SOS1 degradation and inhibition of ERK activation. DOK3 mice are hypersensitive to sublethal doses of LPS and have altered cytokine responses in vivo. During endotoxin tolerance, DOK3 expression remains stable, and it negatively regulates the expression of SHIP1, IRAK-M, SOCS1, and SOS1. As such, DOK3-deficient macrophages are more sensitive to LPS-induced tolerance becoming tolerant at lower levels of LPS than wild type cells. Taken together, the absence of DOK3 increases LPS signaling, contributing to LPS-induced tolerance. Thus, DOK3 plays a role in TLR signaling during both na?ve and endotoxin-induced tolerant conditions.  相似文献   

13.
It is known that lipopolysaccharide (LPS)-induced monocyte chemotactic protein (MCP)-1 secretion from tissues recruits monocytes from the circulation, but the mechanism of the LPS-induced MCP-1 production in skeletal muscle is largely unexplained. To clarify the effect of LPS on MCP-1 production in skeletal muscle cells, C2C12 cells from a mouse skeletal muscle cell line, and RAW 264.7 cells from a mouse macrophage cell line, were used to assess production of LPS-induced MCP-1, nitric oxide (NO) and interferon (IFN)-beta. In addition, we evaluated inducible NO synthases (iNOS) mRNA expression using RT-PCR, and cell surface expression of CD14 and toll-like receptor (TLR) 4 using flow cytometry. In C2C12 cells, LPS stimulation increased MCP-1 production (p < 0.01), but combined treatment with LPS and NO inducer, diethylammonium (Z)-1-(N,N-diethylamino) diazen-1-ium-1,2-diolate (NONOate), significantly inhibited its production (p < 0.01). LPS stimulation neither induced production of NO nor of IFN-beta, which is an NO inducer. Recombinant IFN-beta stimulation, on the other hand, enhanced LPS-induced NO production (p < 0.01). Interestingly, we found that surface expression of CD14, which regulates IFN-beta production, in C2C12 cells was much lower than that in RAW 264.7 cells, although TLR4 expression on C2C12 cells was similar to that on RAW 264.7 cells. These data suggest that the reduced NO production in response to LPS may depend on low expression of CD14 on the cell surface of skeletal muscle, and that it may enhance LPS-induced MCP-1 production. Together, these functions of skeletal muscle could decrease the risk of bacterial infection by recruitment of monocytes.  相似文献   

14.
Uncontrolled TLR4 signaling may induce excessive production of proinflammatory cytokines and lead to harmful inflammation; therefore, negative regulation of TLR4 signaling attracts much attention now. PECAM-1, a member of Ig-ITIM family, can mediate inhibitory signals in T cells and B cells. However, the role and the mechanisms of PECAM-1 in the regulation of TLR4-mediated LPS response in macrophages remain unclear. In this study, we demonstrate that PECAM-1 ligation with CD38-Fc fusion protein negatively regulates LPS-induced proinflammatory cytokine TNF-alpha, IL-6, and IFN-beta production by inhibiting JNK, NF-kappaB, and IFN regulatory factor 3 activation in macrophages. In addition, PECAM-1 ligation-recruited Src homology region 2 domain-containing phosphatase 1 (SHP-1) and Src homology region 2 domain-containing phosphatase 2 (SHP-2) may be involved in the inhibitory effect of PECAM-1 on TLR4 signaling. Consistently, silencing of PECAM-1 enhances the macrophage response to LPS stimulation. Taken together with the data that PECAM-1 is constitutively expressed in macrophages and its expression is up-regulated by LPS stimulation, PECAM-1 might function as a feedback negative regulator of LPS inflammatory response in macrophages. This study may provide a potential target for intervention of inflammatory diseases.  相似文献   

15.
The lung collectin surfactant protein A (SP-A) has both anti-inflammatory and prophagocytic activities. We and others previously showed that SP-A inhibits the macrophage production of tumor necrosis factor (TNF)-alpha stimulated by the gram-negative bacterial component LPS. We propose that SP-A decreases the production of proinflammatory cytokines by alveolar macrophages via a CD14-independent mechanism. SP-A inhibited LPS-simulated TNF-alpha production in rat and mouse macrophages in the presence and absence of serum (72% and 42% inhibition, respectively). In addition, SP-A inhibited LPS-induced mRNA levels for TNF-alpha, IL-1 alpha, and IL-1 beta as well as NF-kappa B DNA binding activity. SP-A also diminished ultrapure LPS-stimulated TNF-alpha produced by wild-type and CD14-null mouse alveolar macrophages by 58% and 88%, respectively. Additionally, SP-A inhibited TNF-alpha stimulated by PMA in both wild-type and TLR4-mutant macrophages. These data suggest that SP-A inhibits inflammatory cytokine production in a CD14-independent manner and also by mechanisms independent of the LPS signaling pathway.  相似文献   

16.
Blockade of excessive Toll-like receptor (TLR) signaling is a therapeutic approach being actively pursued for many inflammatory diseases. Here we report a Chinese herb-derived compound, sparstolonin B (SsnB), which selectively blocks TLR2- and TLR4-mediated inflammatory signaling. SsnB was isolated from a Chinese herb, Spaganium stoloniferum; its structure was determined by NMR spectroscopy and x-ray crystallography. SsnB effectively inhibited inflammatory cytokine expression in mouse macrophages induced by lipopolysaccharide (LPS, a TLR4 ligand), Pam3CSK4 (a TLR1/TLR2 ligand), and Fsl-1 (a TLR2/TLR6 ligand) but not that by poly(I:C) (a TLR3 ligand) or ODN1668 (a TLR9 ligand). It suppressed LPS-induced cytokine secretion from macrophages and diminished phosphorylation of Erk1/2, p38a, IκBα, and JNK in these cells. In THP-1 cells expressing a chimeric receptor CD4-TLR4, which triggers constitutive NF-κB activation, SsnB effectively blunted the NF-κB activity. Co-immunoprecipitation showed that SsnB reduced the association of MyD88 with TLR4 and TLR2, but not that with TLR9, in HEK293T cells and THP-1 cells overexpressing MyD88 and TLRs. Furthermore, administration of SsnB suppressed splenocyte inflammatory cytokine expression in mice challenged with LPS. These results demonstrate that SsnB acts as a selective TLR2 and TLR4 antagonist by blocking the early intracellular events in the TLR2 and TLR4 signaling. Thus, SssB may serve as a promising lead for the development of selective TLR antagonistic agents for inflammatory diseases.  相似文献   

17.
Toll-like receptor (TLR) and interferon-gamma (IFN-gamma) signaling pathways are important for both innate and adaptive immune responses. However, the cross-talk between these two signaling pathways is incompletely understood. Here we show that IFN-gamma and LPS synergistically induce the expression of proinflammatory factors, including interleukin-1 (IL-1), IL-6, IL-12, NO, and tumor necrosis factor-alpha (TNF-alpha). Comparable synergism was observed between IFN-gamma and peptidoglycan (PGN; a TLR2 ligand) and poly(I:C) (a TLR3 ligand) in the induction of IL-12 promoter activity. IFN-gamma enhanced lipopolysaccharide (LPS)-induced ERK and JNK phosphorylation but had no effect on LPS-induced NF-kappaB activation. Interestingly, we found that IRF-8-/- macrophages were impaired in the activation of LPS-induced ERK and JNK and the production of proinflammatory cytokines induced by LPS or IFN-gamma plus LPS. Retroviral transduction of IRF-8 into IRF-8-/- macrophages rescued ERK and JNK activation. Furthermore, co-immunoprecipitation experiments show that IRF-8 physically interacts with TRAF6 at a binding site between amino acid residues 356 and 305 of IRF-8. Transfection of IRF-8 enhanced TRAF6 ubiquitination, which is consistent with a physical interaction of IRF-8 with TRAF6. Taken together, the results suggest that the interaction of IRF-8 with TRAF6 modulates TLR signaling and may contribute to the cross-talk between IFN-gamma and TLR signal pathways.  相似文献   

18.
19.
Researchers have previously questioned the suitability of cell lines as models for primary cells. In this study, we used Raman microspectroscopy to characterize live A549 cells from a unique molecular biochemical perspective to shed light on their suitability as a model for primary human pulmonary alveolar type II (ATII) cells. We also investigated a recently developed transduced type I (TT1) cell line as a model for alveolar type I (ATI) cells. Single-cell Raman spectra provide unique biomolecular fingerprints that can be used to characterize cellular phenotypes. A multivariate statistical analysis of Raman spectra indicated that the spectra of A549 and TT1 cells are characterized by significantly lower phospholipid content compared to ATII and ATI spectra because their cytoplasm contains fewer surfactant lamellar bodies. Furthermore, we found that A549 spectra are statistically more similar to ATI spectra than to ATII spectra. The spectral variation permitted phenotypic classification of cells based on Raman spectral signatures with >99% accuracy. These results suggest that A549 cells are not a good model for ATII cells, but TT1 cells do provide a reasonable model for ATI cells. The findings have far-reaching implications for the assessment of cell lines as suitable primary cellular models in live cultures.  相似文献   

20.
Caveolin-1 is one of the important regulators of vascular permeability in inflamed lungs. Podocalyxin is a CD34 protein expressed on vascular endothelium and has a role in podocyte development in the kidney. Few data are available on the expression of caveolin-1 and podocalyxin in lungs challenged with Toll-like receptor 2 (TLR2) agonists such as mycoplasma-derived macrophage activating lipopeptide or with immune modulators such as Fms-like tyrosine kinase receptor-3 ligand (Flt3L), which expands dendritic cell populations in the lung. Because of the significance of pathogen-derived molecules that act through TLR2 and of the role of immune modulators in lung physiology, we examine the immunohistochemical expression of caveolin-1 and podocalyxin in lungs from rats challenged with a 2-kDa macrophage-activating lipopeptide (MALP-2) and Flt3L. Normal rat lungs expressed caveolin-1 in alveolar septa, vascular endothelium and airway epithelium, especially along the lateral borders of epithelial cells but not in alveolar macrophages. MALP-2 and Flt3L decreased and increased, respectively, the expression of caveolin-1. Caveolin-1 expression seemed to increase in microvessels in bronchiole-associated lymphoid tissue (BALT) in Flt3L-challenged lungs but not in normal or MALP-2-treated lungs. Podocalyxin was absent in the epithelium and alveolar macrophages but was present in the vasculature of control, Flt3L- and MALP-2-treated rats. Compared with control and MALP-2-treated rats, Flt3L-treated lungs showed greater expression of podocalyxin in BALT vasculature and at the interface of monocytes and the endothelium. These immunohistochemical data describing the altered expression of caveolin-1 and podocalyxin in lungs treated with MALP-2 or Flt3L encourage further mechanistic studies on the role of podocalyxin and caveolin-1 in lung inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号