首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
姚勤  高路  陈克平  胡志刚 《昆虫学报》2005,48(6):871-875
为了研究家蚕核型多角体病毒(Bombyx mori nuclear polyhedrosis virus,BmNPV)在其宿主幼虫体内不同组织中的增殖动态,对敏感性家蚕品种306幼虫进行经口定量滴注病毒。在接种后9个时间点,对中肠、血淋巴和脂肪体进行取样。以BmNPV DNA 聚合酶基因(dnapol)指示病毒拷贝数,同时以家蚕细胞质肌动蛋白A3(actin A3)基因作为参比基因,用荧光定量PCR的方法分别检测各个时间点的中肠、血淋巴和脂肪体中病毒的拷贝数。结果表明经口感染2 h,病毒进入中肠;12 h,病毒已经到达血淋巴和脂肪体;再经过约12 h的潜伏期,病毒在各组织中开始快速增殖,到84 h各组织中病毒增殖达到平台期。  相似文献   

2.
家蚕浓核病毒(镇江)株主要结构蛋白基因的克隆及表达   总被引:3,自引:0,他引:3  
家蚕浓核病毒(Bombyx mori densovirus,BmDNV)是一种昆虫细小病毒.与其它昆虫细小病毒感染昆虫体内多种组织不同,家蚕浓核病毒只感染家蚕中肠上皮组织的圆筒型细胞,感染该病毒细胞的细胞核可以被孚尔根和甲基绿浓染,在病毒感染的早期中肠上皮组织细胞数量增加,形成褶皱,最后感染细胞脱落到肠腔中[1-3].自从20世纪70年代末日本学者证实家蚕浓核病是由于家蚕浓核病毒感染引起的以来[4],已经分离得到了多个病毒株系[5-8].根据它们在血清学、理化特性、品种感受性和病理特征等方面的差异,分为BmDNV-1(伊那株)和BmDNV-2(以山梨株为代表)[8-11].  相似文献   

3.
家蚕中肠组织抗核型多角体病毒病的相关蛋白分析   总被引:7,自引:0,他引:7  
家蚕中肠上皮是病毒经口侵入遇到的第一个组织。昆虫幼虫抵御杆状病毒的感染,可通过选择性的使感染的中肠上皮细胞发生调亡并在释放病毒粒子进入血淋巴之前使感染的细胞从中肠脱落。为研究家蚕抗核型多角体病毒(Bombyx mori nucleopolyhedrovirus, BmNPV)病的机制,通过对BmNPV高度抗性和高度敏感性的家蚕品系杂交和回交构建了近等基因系。本文对家蚕高抗,敏感及近等基因系5龄起蚕中肠组织的蛋白质表达谱进行了二维电泳 (two-dimensional gel electrophoresis,2-DE) 分析,并利用基质辅助激光解吸电离飞行时间 (matrix-assisted laser desorption/ionization-time of flight, MALDI-TOF) 质谱对差异蛋白进行鉴定。结果发现了5个差异表达的蛋白。推测这些蛋白可能与家蚕中肠对BmNPV的抗性或感性有关。  相似文献   

4.
按前报用分子筛凝胶柱层析纯化家蚕细胞质多角体病毒(Cytoplasmic polyhedrosis virus,以下简称CPV)作为抗原制备了兔抗血清。对接种CPV后不同时间的家蚕中肠组织内CPV的增殖过程进行了观察,表明利用免疫对流电泳在CPV感染后的12~20小时(即病毒在病蚕中肠组织内增殖初期)就可检出。家蚕CPV的抗血清与其他几种昆虫的CPV有免疫交叉反应,但当家蚕CPV的抗血清经双链多聚核苷酸(肌苷酸/胞嘧啶核苷酸,即poly I/poly C)吸收后,则与其他几种昆虫CPV的交叉反应即行消失。  相似文献   

5.
家蚕核型多角体病毒对小鼠的感染性研究   总被引:1,自引:0,他引:1  
家蚕核型多角体病毒是一类双链闭合环状DNA病毒 ,该病毒被作为载体应用在家蚕生物表达系统 ;为确定该病毒的安全性 ,观察了该病毒对小鼠瘤细胞以及小鼠的感染性 ,结果显示芽生型家蚕核型多角体病毒在人DC杂交瘤细胞株和HL60细胞中无增殖 ;不同剂量的包埋型家蚕核型多角体病毒经口灌胃给小鼠 ,在小鼠肾、肝病理切片及电镜观察中未见病毒颗粒 ,用免疫组化试验检测小鼠肾、肝组织中的多角体病毒也为阴性。  相似文献   

6.
家蚕核型多角体病毒(Bm-NPV)是一类环状DNA病毒。该病毒作为载体,应用在杆状病毒-昆虫真核生物表达系统。为确定家蚕基因工程表达系统产品对人的安全性,观察了该病毒对哺乳动物细胞株及对小鼠的易感性,建立了检测Bm-NPV蛋白组份的dot-ELISA方法,可用于生物表达器生产的产品中残存多角体病毒组份的检测。结果表明,芽生型多角体病毒(BV)在杂交瘤细胞和HL60细胞中不增殖。不同剂量包埋型多角体病毒(OV)灌胃感染小鼠,小鼠肝、肾组织切片的电镜观察及免疫组化染色未见到病毒颗粒。  相似文献   

7.
家蚕核多角体病毒(NPV)感染的中肠组织中的DNA多聚酶,经过磷酸纤维素柱层析纯化,正常家蚕中肠与NPV感染的家蚕中肠NPV多聚酶都表现了前和后两个活力峰,感染NPV的家蚕中肠DNA多聚酶前、后峰的比活力比正常家蚕中肠DNA多聚酶前,后峰的比活力分别提高10~15倍,总活力回收为56~60%。研究了DNA多聚酶的性质,讨论了与NPV复制的关系。  相似文献   

8.
通过人工感染实验,在感染三角帆蚌瘟病病料组织后第3、5、7、9、11 d,运用光学显微镜和电子显微镜分别观察了三角帆蚌(Hyriopsis cumingii)主要消化器官的病理变化特征.结果表明,三角帆蚌瘟病病毒(H.cumingii Plague Virus,HcPV)严重破坏了三角帆蚌消化器官的结构.主要消化腺肝损伤最为严重:光镜下,攻毒7 d内腺管肿大,管腔缩小,7 d后腺管细胞空泡化并形成多核体;电镜下,线粒体、内质网等细胞器结构破坏,病毒粒子增殖速度快.消化道的病理变化主要表现为胃、肠结构的破坏,胃肠基本结构及感染病毒后的病理变化相似:光镜下,攻毒7 d内胃肠结构变化不大,7 d后柱状细胞肿大,纤毛脱落,并伴有上皮细胞的脱落;电镜下,细胞器结构破坏,甚至空泡化,病毒粒子前期增殖较慢,后期增殖较快,但总体增殖速度比肝慢.  相似文献   

9.
家蚕细小病毒样病毒(Bombyx mori parvo-like virus,BmPLV)是一种二分病毒,该病毒在家蚕中肠柱状细胞核内复制和包装,感染的细胞核呈现过分膨胀、细胞核孚尔根浓染等细胞病理学特征。病毒粒子直径20~24 nm,无囊膜呈球型。基因组为单链线性双分子DNA(VD1、VD2),分别独立包装在各自的衣壳中。病毒编码四个非结构蛋白NS1、NS2、NS3和pol(DNA聚合酶),一个主要结构蛋白VP及次要结构蛋白P133。其基因组末端反向重复序列可形成与BmPLV复制有关的"锅柄形"结构,以及含自身编码的DNA聚合酶的序列,推测该病毒与腺病毒复制方式相类似,依靠共价蛋白为起始物完成复制。  相似文献   

10.
胡楠  董战旗  陈婷婷  潘敏慧 《昆虫学报》2015,58(11):1222-1228
【目的】家蚕Bombyx mori核型多角体病毒(BmNPV)核衣壳蛋白VP39为病毒装配所必需。本研究旨在初探VP39在病毒侵染家蚕细胞过程中的功能及特征,以期为家蚕抗病毒研究提供研究基础。【方法】本研究通过构建原核表达载体,诱导原核表达得到多克隆抗体,以Western blot验证VP39表达时相;构建真核表达载体,转染细胞后以免疫荧光手段观测VP39表达定位及影响病毒增殖现象。【结果】制备了VP39多克隆抗体。VP39在病毒感染后大量定位于家蚕细胞核,部分定位于胞质,而过表达的VP39定位于家蚕细胞胞质;过表达VP39后抑制BmNPV感染家蚕细胞。【结论】在BmN-SWU1细胞中过表达VP39会影响BmNPV的扩散,导致BmNPV感染细胞数目大量减少。该结果为VP39调控宿主与病毒的相互作用提供了新的思路。  相似文献   

11.
In the larvae of the silkworm, Bombyx mori, the regeneration of midgut cells infected with a cytoplasmic polyhedrosis virus (CPV), a flacherie virus (FV), and a small DNA virus (SDV) was studied. Large numbers of newly developed cells appeared in the CPV-infected part of the midgut epithelium just before larval molt, and along with their development, the CPV-infected old columnar cells were discharged into the midgut lumen during the molt. On the other hand, in the uninfected portion of the midgut only a few cells developed, and no columnar cells were discharged. Similarly, the marked replacement of midgut epithelial cells during larval molt was also observed in larvae infected with CPV + FV. In the larvae infected with CPV + SDV, the columnar cells lost their regenerative ability, and because of the exfoliation of infected columnar cells, the midgut epithelium consisted mainly of uninfected goblet cells at a late stage of infection. The degree of epithelial regeneration varied with the silkworm strain and the dosage of the virus.  相似文献   

12.
The epithelium of larval midgut of the greater wax moth, Galleria mellonela, was replaced during the larval-pupal moult. The development of this moth was tentatively divided into 11 stages, from the full-grown larva of last instar to the 4-day-old pupa. The midgut at each stage was observed for (1) overall structure, (2) the position of goblet cells, and (3) the appearance of the yellow body. Light microscopy revealed that cell death in the midgut began in a cocoon-spinning larva (stage II), when pigments in the stemmata started to migrate. Before drastic remodeling started to occur, cytoplasmic projections in the goblet cavities were transformed. The larval midgut changed markedly at stage III, when the pigments left the stemmata. The epithelium of the larval midgut dropped as a whole into the lumen, transforming into the yellow body. Simultaneously, a pupal midgut epithelium developed. Electron microscopy of the columnar cells of a stage III larva showed that microvilli and mitochondria looked normal even though the nucleus with condensed heterochromatin resembled an apoptotic nucleus of vertebrate and higher plant cells. Caspase-3-like protease activity was restricted to the larval midgut and increased in parallel with the formation of the yellow body. The results indicate that the replacement of the larval midgut is facilitated by a typical apoptotic process.  相似文献   

13.
Abstract. In the newly hatched larva in Allacma fusca , the midgut epithelium was fully developed and formed by flattened epithelial cells surrounding the yolk mass in the midgut lumen. Immediately after hatching, the first larva began to feed; the migut lumen was filled with the yolk mass and food (mainly algae). Regenerative cells typical of the developing midgut epithelium of many insects were not observed. Initially, midgut cells of the larva were cuboidal but became columnar in shape with distinct regionalization in the distribution of cell organelles. Furthermore, urospherites appeared in the midgut cell cytoplasm, i.e., structures characteristic for the midgut epithelium of insects having no Malpighian tubules. As a result, cells with the capacity for digestion, absorption, and excretion were observed to be completely formed in the first larval stage.  相似文献   

14.
Waku Y  Sumimoto K 《Tissue & cell》1971,3(1):127-136
The morphological changes of the metamorphosing midgut cell in the silkworm were traced light-microscopically. The regenerative cells of the larval midgut proliferate rapidly during larval-pupal molt and finally replace the larval midgut, establishing new pupal midgut tissue composed of only one cell type. Pupal midgut cells contain numerous basophilic granules which are believed on histological grounds to be the deposits of calcium salts. Calcium seems to be transported from hemolymph to the pupal midgut cells and stored there temporarily as insoluble salts such as phosphate or carbonate, and then finally discharged into the lumen in a merocrine fashion. The midgut cells of the adult no longer contain calcium deposits.  相似文献   

15.
Quite different ultrastructural changes were observed in the columnar cell and the goblet cell of the silkworm midgut after administration of the crystalline toxin of Bacillus thuringiensis. Shortly after the ingestion of the toxin, the deep infoldings of the basal cell membrane of some columnar cells became very irregular in shape and the mitochondria near the basal region were transformed into a condensed form. A few goblet cells showed relatively high electron density in the cytoplasm. The earliest pathological changes were slight and located in a region lying between the first and second thirds of the midgut. With the passage of time, they spread anteriorly and posteriorly to include the entire anterior two thirds of the midgut and became more profound. The cytoplasm of columnar cells became very electron transparent. Most mitochondria were transformed into a condensed form and the endoplasmic reticulum assumed a vacuole-like configuration. The basal infoldings of the cell membrane almost disappeared. On the other hand, the cytoplasm of the goblet cells became very electron dense and granular. The clear basal infoldings of the cell membrane were enlarged making a striking contrast with the dense cytoplasm. However, the mitochondria and the endoplasmic reticulum did not show any pathological deformation.  相似文献   

16.
1. The membrane anchor of aminopeptidase N associated with larval midgut cell membranes of the silkworm, Bombyx mori, was investigated by using phosphatidylinositol-specific phospholipase C (PIPLC) and proteases. 2. Aminopeptidase N, which was virtually all localized in the brush border membrane, was solubilized by PIPLC but not by papain or trypsin. 3. Detergent-solubilized amphiphilic aminopeptidase N was converted into a hydrophilic form by PIPLC but not by papain. 4. Either of these effects of PIPLC on aminopeptidase N was maximally 40%. 5. These results suggest that in larval midgut cells of the silkworm, B. mori, at least 40% aminopeptidase N is anchored in the brush border membrane via glycosyl-phosphatidylinositol.  相似文献   

17.
Baldwin KM  Hakim RS 《Tissue & cell》1991,23(3):411-422
The number of epithelial cells comprising larval midgut of the tobacco hornworm moth, Manduca sexta increases 200-fold in development from the first to the fifth instar. We have examined larvae periodically before and during molting to follow epithelial cell proliferation and differentiation. The midgut epithelium in Manduca sexta consists predominantly of columnar and goblet cells. These are arranged in a characteristic pattern with each goblet cell surrounded by a single layer of 4-6 columnar cells (Hakim et al., (1988)). While undifferentiated basal stem cells are infrequently seen in intermolt larvae, just prior to the period when external signs of molting are visible, their number increases and mitotic figures become common. Proliferation continues for several hours and then these stem cells differentiate following a pattern similar to that seen during embryogenesis (Hakim et al., (1988)). Here, however, the newly differentiating cells become intercalated among the mature differentiated cells already present in the epithelium. Since the pattern of individual goblet cells surrounded by a reticulum of columnar cells is maintained after the addition of new cells, the midgut epithelium of molting larvae appears to be a useful model for studying pattern formation in development.  相似文献   

18.
Cultured stem cells from larval midgut tissue of the lepidopteran Heliothis virescens respond to alterations in external calcium ion concentration (Ca(2+) (out)) by changing the rate of stem cell proliferation and by differentiating to larval or non-larval phenotypes. Decreasing the external concentration of Ca(2+) with the Ca(2+) chelating agent EGTA increased proliferation of stem cells in culture, and doubled the proportion of cells differentiating to columnar and goblet cells typical of larval midgut compared to controls. In contrast, increasing inward transport of Ca(2+) into the cells by increasing the concentration of external calcium ion concentration, or by incubation with the Ca(2+) ionophore A23187 (which tends to open inward plasma membrane Ca(2+) channels), induced dose-dependent differentiation to non-midgut cell types such as squamous and scale-like cells. However, the latter treatments did not significantly alter stem cell proliferation or differentiation to normal larval midgut epithelium.  相似文献   

19.
Techniques of microscopy and histopathology were employed to study the positive-sense, single-stranded RNA virus, the Helicoverpa armigera stunt virus (HaSV; omegatetravirus, Tetraviridae) infecting its caterpillar host. Infection of the virus per os during the first three instars of larval development is virulent and leads to rapid stunting and mortality. In contrast, no detectable symptoms occur in later larval development, signifying a high degree of developmental resistance. A quantitative study of cell populations in the host midgut during this time showed that increased cell numbers during development alone could not account for the increase in resistance. HaSV infection was restricted to the midgut and three of its four cell types. In younger larvae, the virus initiated its infection in closely situated foci that appeared to expand to link with others to cover larger areas of the midgut. The midgut cells of the infected larvae responded with an increased rate of sloughing to an extent rendering the midgut incapable of maintenance or recovery of normal function. In contrast, infection of older larvae by HaSV did not lead to overt pathology although foci of HaSV infection were detected in their midguts. However, the foci were more sparsely situated, failed to expand, and eventually disappeared, presumably due to cell sloughing. These observations indicate that cell sloughing is an immune response existing throughout larval development but midguts of older larvae have an additional mechanism to account for the increased resistance. This second mechanism results in midgut cells becoming more refractory to infection and, combined with cell sloughing, allows the midguts of older larvae to recover more readily from HaSV infection. These two mechanisms are similar to those seen with host responses to baculoviruses, which display developmental resistance to a lesser degree against more general infections. HaSV remaining in the midgut appears to amplify the degree of developmental resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号