首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
噬藻体辅助代谢基因(AMGs)研究进展   总被引:1,自引:0,他引:1  
噬藻体是一类广泛存在于海洋及淡水环境中以蓝藻为感染宿主的病毒,对蓝藻种群结构与多样性以及水生态环境具有重要的影响。噬藻体携带一系列与宿主新陈代谢相关的同源基因被称为辅助代谢基因。它们编码的蛋白在噬藻体感染蓝藻过程中,可参与宿主的光合作用、戊糖磷酸循环、营养物质摄取以及核苷酸生物合成等代谢活动。近年来,一些辅助代谢基因被作为噬藻体分子检测的靶标基因,并用于噬藻体遗传多样性及其与蓝藻间相互关系的研究。本文综述了国内外有关噬藻体辅助代谢基因的来源、生物学功能及其多样性等方面的研究进展。  相似文献   

2.
张奇亚 《微生物学通报》2020,47(10):3277-3286
噬藻体是感染蓝细菌(蓝藻)的病毒,能调控蓝细菌种群的丰度和多样性,在许多水生生态系统的食物网动态变化和生物地球化学循环中起关键作用。噬藻体与宿主细胞发生各种相互作用,包括吸附、入侵和复制,参与感染过程,从而完成噬藻体的生命周期。本文在综述噬藻体生命周期与基因组结构相互关联的基础上,重点介绍噬藻体与宿主蓝细菌相互作用的蛋白,如噬藻体吸附蛋白、内肽酶、穿孔素、DNA聚合酶、藻胆体降解蛋白A(NblA)、毒力因子、抗CRISPR蛋白(Acr)和小分子热休克蛋白等,分析它们的分子特性,阐述它们在噬藻体感染蓝细菌以及噬藻体-蓝细菌相互作用的分子机制。为了更好地认识驱动不同噬藻体与宿主及水生环境相互作用的策略、感染效率及生态学影响,本文不仅对这些与噬藻体感染相关的重要基因研究动态进行综述与讨论,还在了解噬藻体丰富的多样性和复杂性的基础上,提出应用新技术对噬藻体感染相关基因的功能进行广泛研究,以期扩展全球水生病毒数据库,进一步认识噬藻体与宿主的相互作用机理。  相似文献   

3.
噬藻体和蓝藻间的基因转移及协同进化作用   总被引:1,自引:0,他引:1  
生物物种之间的水平基因转移广泛存在于细菌、古生菌和真核生物中,并能造成同一生境中种群的快速协同进化。噬藻体是感染蓝藻的专一性病毒,近年研究表明其在蓝藻水华生消中发挥了重要作用,使人们认识到了噬藻体的重要生态地位。综述了物种间的水平基因转移,介绍了噬藻体遗传多样性研究中常用的光合作用基因、结构蛋白基因等靶标基因所介导的基因转移以及基因转移引起的病毒和宿主的协同进化,并介绍了研究基因转移所用到的试验技术以及今后所要面临的问题。  相似文献   

4.
【背景】噬藻体是感染蓝藻的病毒,是水生系统的重要组成部分。它们对宿主种群死亡率有重要影响,是控制蓝藻水华生消的潜在因子,对蓝藻群落结构的调控具有重要意义。大量研究揭示了海洋和淡水环境中噬藻体的高度多样性,但目前对高原湿地中噬藻体的多样性知之甚少。【目的】阐明我国纳帕海高原湿地噬藻体g20基因的遗传多样性,为进一步开展高原湿地微生物资源及其生态功能研究提供理论基础。【方法】采集雨季的水体样品,以衣壳蛋白基因g20为标记基因,利用特异性引物Cps1和Cps8对其进行PCR扩增,得到26条不同的g20基因有效序列,并将其与其他生境中g20基因序列进行主坐标分析和系统发育分析。【结果】与其他海洋和淡水的噬藻体序列相比,纳帕海高原湿地中噬藻体的序列与其他稻田序列更为相近;但也存在部分序列单独聚簇,这可能为纳帕海高原湿地中独有的噬藻体类型。【结论】表明该地区的噬藻体较丰富,并具有一定的独特性。  相似文献   

5.
赵恒  刘玉珊  陈彤  刘丽 《微生物学报》2023,63(2):760-774
【目的】噬藻体(cyanophage)广泛存在于自然水体生态系统中,通过侵染蓝藻进而调控蓝藻种群及群落结构,具有重要生态功能和生态地位,在控制蓝藻水华方面有巨大开发潜力。本研究旨在探究云南高原湖泊噬藻体psbA基因多样性,分析其系统进化地位,为深入了解高原湖泊生态功能、开发利用噬藻体资源奠定理论基础。【方法】以云南高原主要湖泊滇池、抚仙湖和星云湖等为研究对象,以psbA基因作为分子靶标,对湖泊水体中噬藻体遗传多样性进行研究。【结果】从不同湖泊中共获得100条环境噬藻体psbA基因序列,系统发育分析表明,湖泊的噬藻体psbA基因序列与中国东湖、中国东北稻田、日本稻田等淡水中的环境噬藻体psbA基因亲缘关系较近,与海洋环境噬藻体psbA基因亲缘关系较远;抚仙湖中的噬藻体psbA基因多样性高于滇池、星云湖和异龙湖中的噬藻体psbA基因多样性;云南高原湖泊中存在新的噬藻体类群;各湖泊秋冬季节噬藻体psbA基因遗传多样性差异不明显。【结论】云南主要高原湖泊噬藻体psbA基因遗传多样性高,与淡水环境噬藻体psbA基因亲缘关系较近,且存在独特的噬藻体类群。  相似文献   

6.
噬藻体生物多样性的研究动态   总被引:1,自引:0,他引:1       下载免费PDF全文
噬藻体(Cyanophage)是感染原核生物蓝藻(Cyanobacteria)的病毒,广泛分布于各种水生态系统中,对调控初级生产力、蓝藻种群密度及结构演替、微生物间基因转移以及全球生物地理化学循环等方面有重大影响。关注噬藻体的生物多样性,发现其感染相关基因,阐明噬藻体与宿主蓝藻的相互作用,将为藻华控制及认识病毒在复杂水环境中的功能提供重要信息。本文就噬藻体生物多样性,包括生态系统多样性、物种多样性及遗传多样性研究动态做一综述。  相似文献   

7.
东北稻田水体噬藻体psbA基因多样性   总被引:1,自引:1,他引:0  
【目的】揭示东北稻田噬藻体psbA基因多样性,分析其系统进化地位,为噬藻体生态学研究提供数据支持。【方法】采用滤膜分离并浓缩噬体、PCR-克隆测序技术对我国东北稻田水体中噬藻体psbA基因进行调查。【结果】在东北稻田水体中共得到17条来自于噬藻体的psbA基因,经系统进化分析表明,我国东北稻田具有新的噬藻体的类群,与日本稻田生态系统中psbA基因类群相比,两地间噬藻体类群存在显著的差异,稻田水体中噬藻体psbA基因类群有别于海洋、湖泊类群。【结论】采用PCR-克隆测序技术以psbA基因为分子标记首次对我国东北稻田水体噬藻体类群进行调查,发现有新的噬藻体类群。  相似文献   

8.
感染丝状蓝藻的噬藻体的裂解周期和释放量的测定   总被引:4,自引:1,他引:3  
近年来,随着浮游病毒的认识的深入,人们认识到浮游病毒对水体中初级生产力的影响是巨大的[1],其主要证据就是发现噬藻体在海洋蓝藻的种群控制上发挥着重要作用[2]. 噬藻体的释放量和裂解周期是衡量噬藻体感染力的重要指标,很多重要的生态指标如病毒在生态系统中对宿主的致死率、病毒种群得以维持的阈浓度等都需要使用病毒的释放量和裂解周期来加以推算[3,4], 因此准确地测定这两个基本参数是十分重要的.在自然界,很多丝状蓝藻,如颤藻、鱼腥藻、螺旋藻、席藻等是能够形成水华的,其中有些还具有产毒的功能[5].丝状蓝藻的形态特征有别于单细胞蓝藻, 在被噬藻体感染时,丝状蓝藻的感染周期和光合生理也与单细胞蓝藻有较大的差异[6],因此研究裂解丝状蓝藻的噬藻体的方法可能不同于感染单细胞的噬藻体.本次试验以一种感染丝状宿主的噬藻体为材料,探讨了确定其裂解周期和释放量的研究方法.  相似文献   

9.
【目的】揭示大庆湿地可培养蓝藻噬菌体遗传基因多样性,分析其系统进化地位,为噬藻体生态学研究提供数据支持。【方法】以鱼腥藻(Anabaena PCC7120)为宿主,采用液体富集和双层平板法分离大庆湿地水体中可培养的噬藻体,提取噬藻体混合液的DNA,PCR扩增噬藻体编码衣壳组装蛋白的g20基因和编码T7型短尾病毒的核糖体聚合酶的pol基因,克隆测序,构建系统进化树,明确可培养噬藻体相关基因的系统进化地位。【结果】克隆测序获得1条g20基因序列,4条pol基因序列。系统进化分析表明,获得g20序列隶属于可培养噬藻体类群(Clusterδ)中。而3条pol基因与我国吉林碱性稻田水体噬藻体类群(PG-Pol-I和PG-Pol-II)更相近,另一条pol序列形成独立的进化分枝。【结论】这是首次调查大庆湿地水体侵染鱼腥藻的可培养噬藻体的g20和pol基因,初步确认以鱼腥藻(Anabaena PCC7120)为宿主的可培养噬藻体g20基因归属于Clusterδ中,而大庆湿地可培养噬藻体的pol基因与我国大安稻田水体pol基因相近。  相似文献   

10.
噬藻体(Cyanophage)是一类感染蓝藻的病毒,形态上同于噬菌体[1],近期的研究表明,噬藻体作为水体环境中活跃的动态因子,在控制水体初级生产力和有害藻类水华(Harmful Algal Bloom,HAB)方面可能发挥着重要的作用[2,3],甚至影响水体生态系统中食物链的结构[4],因此研究水体中噬藻体的生理生态学特性对于了解其生态功能是非常重要的,但是由于自然水体中的噬藻体浓度往往较低,难以直接对其进行定性或定量研究,所以对天然水样中的噬藻体进行高效、快速的浓缩是研究噬藻体生态地位和功能的关键和难点.  相似文献   

11.
In order to obtain insights into the evolution of colorless (apochlorotic) diatoms, we investigated newly established apochlorotic strains of Nitzschia spp. using light and electron microscopy and molecular phylogenetic analyses. Fluorescence microscopic observations demonstrated that the apochlorotic diatoms lack chlorophylls. Transmission electron microscopy of two apochlorotic strains also demonstrated that their plastids lacked thylakoids; instead, having four‐membrane‐bound organelles without thylakoids, similar to nonphotosynthetic plastid remnants. From the apochlorotic strains, we also found plastid small subunit rRNA genes that were unusually long branched in phylogenetic analyses, as observed in other nonphotosynthetic plastids. Molecular phylogenetic analysis of the nucleus‐encoded large subunit rRNA genes showed eight distinct lineages for apochlorotic diatoms. The eight apochlorotic lineages were not monophyletic, suggesting that the loss of photosynthesis took place multiple times independently within Nitzschia. Several diatoms, including Nitzschia spp., are mixotrophic, which is an expected mode of nutrition that would help explain the evolutionary switch from a photosynthetic lifestyle to a heterotrophic lifestyle.  相似文献   

12.
BACKGROUND AND AIMS: In crops other than sugarcane there is good evidence that the size and activity of carbon sinks influence source activity via sugar-related regulation of the enzymes of photosynthesis, an effect that is partly mediated through coarse regulation of gene expression. METHODS: In the current study, leaf shading treatments were used to perturb the source-sink balance in 12-month-old Saccharum spp. hybrid 'N19' (N19) by restricting source activity to a single mature leaf. Changes in leaf photosynthetic gas exchange variables and leaf and culm sugar concentrations were subsequently measured over a 14 d period. In addition, the changes in leaf gene response to the source-sink perturbation were measured by reverse northern hybridization analysis of an array of 128 expressed sequence tags (ESTs) related to photosynthetic and carbohydrate metabolism. KEY RESULTS: Sucrose concentrations in immature culm tissue declined significantly over the duration of the shading treatment, while a 57 and 88% increase in the assimilation rate (A) and electron transport rate (ETR), respectively, was observed in the source leaf. Several genes (27) in the leaf displayed a >2-fold change in expression level, including the upregulation of several genes associated with C(4) photosynthesis, mitochondrial metabolism and sugar transport. Changes in gene expression levels of several genes, including Rubisco (EC 4.1.1.39) and hexokinase (HXK; EC 2.7.1.1), correlated with changes in photosynthesis and tissue sugar concentrations that occurred subsequent to the source-sink perturbation. CONCLUSIONS: These results are consistent with the notion that sink demand may limit source activity through a kinase-mediated sugar signalling mechanism that correlates to a decrease in source hexose concentrations, which, in turn, correlate with increased expression of genes involved in photosynthesis and metabolite transport. The signal feedback system reporting sink sufficiency and regulating source activity may be a potentially valuable target for future genetic manipulation to increase sugarcane sucrose yield.  相似文献   

13.
In C4 sugarcane (Saccharum spp. hybrids), photosynthetic activity has been shown to be regulated by the demand for carbon from sink tissues. There is evidence, from other plant species, that sink-limitation of photosynthesis is facilitated by sugar-signaling mechanisms in the leaf that affect photosynthesis through regulation of gene expression. In this work, we manipulated leaf sugar levels by cold-girdling leaves (5°C) for 80 h to examine the mechanisms whereby leaf sugar accumulation affects photosynthetic activity and assess whether signaling mechanisms reported for other species operate in sugarcane. During this time, sucrose and hexose concentrations above the girdle increased by 77% and 81%, respectively. Conversely, leaf photosynthetic activity (A) and electron transport rates (ETR) decreased by 66% and 54%, respectively. Quantitative expression profiling by means of an Affymetrix GeneChip Sugarcane Genome Array was used to identify genes responsive to cold-girdling (56 h). A number of genes (74) involved in primary and secondary metabolic pathways were identified as being differentially expressed. Decreased expression of genes related to photosynthesis and increased expression of genes involved in assimilate partitioning, cell wall synthesis, phosphate metabolism and stress were observed. Furthermore four probe sets homologous to trehalose 6-phosphate phosphatase (TPP; EC 5.3.1.1) and trehalose 6-phosphate synthase (TPS; EC 2.4.1.15) were up- and down-regulated, respectively, indicating a possible role for trehalose 6-phosphate (T6P) as a putative sugar-sensor in sugarcane leaves.  相似文献   

14.
Large-scale mutant libraries have been indispensable for genetic studies, and the development of next-generation genome sequencing technologies has greatly advanced efforts to analyze mutants. In this work, we sequenced the genomes of 660 Chlamydomonas reinhardtii acetate-requiring mutants, part of a larger photosynthesis mutant collection previously generated by insertional mutagenesis with a linearized plasmid. We identified 554 insertion events from 509 mutants by mapping the plasmid insertion sites through paired-end sequences, in which one end aligned to the plasmid and the other to a chromosomal location. Nearly all (96%) of the events were associated with deletions, duplications, or more complex rearrangements of genomic DNA at the sites of plasmid insertion, and together with deletions that were unassociated with a plasmid insertion, 1470 genes were identified to be affected. Functional annotations of these genes were enriched in those related to photosynthesis, signaling, and tetrapyrrole synthesis as would be expected from a library enriched for photosynthesis mutants. Systematic manual analysis of the disrupted genes for each mutant generated a list of 253 higher-confidence candidate photosynthesis genes, and we experimentally validated two genes that are essential for photoautotrophic growth, CrLPA3 and CrPSBP4. The inventory of candidate genes includes 53 genes from a phylogenomically defined set of conserved genes in green algae and plants. Altogether, 70 candidate genes encode proteins with previously characterized functions in photosynthesis in Chlamydomonas, land plants, and/or cyanobacteria; 14 genes encode proteins previously shown to have functions unrelated to photosynthesis. Among the remaining 169 uncharacterized genes, 38 genes encode proteins without any functional annotation, signifying that our results connect a function related to photosynthesis to these previously unknown proteins. This mutant library, with genome sequences that reveal the molecular extent of the chromosomal lesions and resulting higher-confidence candidate genes, will aid in advancing gene discovery and protein functional analysis in photosynthesis.  相似文献   

15.
Conservation of the photosynthesis gene cluster in Rhodospirillum centenum   总被引:5,自引:0,他引:5  
Intraspecies and intergenus complementation analysis were utilized to demonstrate that photosynthesis genes are clustered in distantly related purple photosynthetic bacteria. Specifically, we show that the linkage order for genes involved in bacteriochlorophyll and carotenoid biosynthesis in Rhodospirillum centenum are arranged essentially as in Rhodobacter capsulatus and Rhodobacter sphaeroides. In addition, the location and relative distance observed between the puf and puh operons which encode for light harvesting and reaction-centre structural genes are also conserved between these species. Conservation of the photosynthesis gene cluster implies either that there are structural or regulatory constraints that limit rearrangement of the photosynthesis gene cluster or that there may have been lateral transfer of the photosynthesis gene cluster among different species of phototrophic bacteria.  相似文献   

16.
Chloroplast redox signals: how photosynthesis controls its own genes   总被引:13,自引:0,他引:13  
The photosynthetic apparatus of higher plants and algae is composed of plastid- and nuclear-encoded components, therefore the expression of photosynthesis genes needs to be highly coordinated. Expression is regulated by various factors, one of the most important of which is light. Photosynthesis functions as a sensor for such light signals, and the redox state of photosynthetic electron transport components and redox-active soluble molecules act as regulating parameters. This provides a feedback response loop in which the expression of photosynthesis genes is coupled to the function of the photosynthetic process, and highlights the dual role of photosynthesis in energy fixation and the reception of environmental information.  相似文献   

17.
科尔沁沙地主要植物种的生理生态学特性   总被引:27,自引:5,他引:22  
对科尔沁沙地主要植物种小叶锦鸡儿、差不嘎蒿、冷蒿和杂交杨进行了光合和水分生理生态学特性的研究,结果表明,小叶锦鸡儿,差不嘎蒿和杂交杨的光合速率在6:00最高,至8:00剧降,在8:00-16:00内处于低水平,16:00以后有回升现象;冷蒿由于6:00光合速率低,下降幅度较小,一日内光合速率降低冷蒿在6:00-8:00、小叶锦鸡儿在8:00-10:00、杂交杨和差不嘎蒿在6:00-10:00以气孔  相似文献   

18.
Temporal variations in carbon isotope ratio of phytoplanktonand dissolved inorganic carbon (DIC) in Lake Suwa were reported.In summer, blooming of Microcystis spp. resulted in low concentrationsof DIC and high pH, and HCO3 was the prominent speciesof DIC. Chlorophyll-specific rates of photosynthesis were relativelyconstant irrespective of the algal biomass during summer. Carboxylationin photosynthesis of Microcystis spp. was mainly catalyzed byribulose bisphosphate carboxylase (RuBPCase). Carbon isotopediscrimination between 13C of phytoplankton and DIC was considerablysmall in early summer and appeared to be negatively correlatedto DIC concentration. We concluded that carbon fixation by phytoplanktonin Lake Suwa is controlled not by the switch of photosyntheticpathways, but by low DIC concentration and high pH, suggestingthat photosynthesis of Microcystis spp. in Lake Suwa is governedby uptake kinetics other than the carboxylation step.  相似文献   

19.
Oxygen is the major external factor affecting the expression of photosynthesis genes in facultatively photosynthetic bacteria. Many investigations over the last years mainly carried out on the closely related species Rhodobacter capsulatus and Rhodobacter sphaeroides have identified a number of proteins involved in the oxygen-regulated signal pathway, in which the RegB/RegA two component system plays a central role. While the RegB/RegA system activates photosynthesis genes under low oxygen tension other proteins like CrtJ and PPBP have a repressing function under high oxygen tension. Additional DNA binding proteins like the integration host factor can modulate the expression of photosynthesis genes. The role of alternative sigma factors in this signal pathway is still unclear.  相似文献   

20.
N2 fixation in phototrophs: adaptation to a specialized way of life   总被引:1,自引:0,他引:1  
Gallon  J.R. 《Plant and Soil》2001,230(1):39-48
Phototrophic diazotrophs include the photosynthetic green and purple bacteria, the heliobacteria, many cyanobacteria and the unusual chlorophyll-containing rhizobia that are found in the stem nodules of Aeschynomene spp. In this review, which concentrates on cyanobacteria, the interrelations between photosynthesis and N2 fixation are discussed. Photosynthesis can, in theory, directly provide the ATP and reductant needed to support N2 fixation but the link between these two processes is usually indirect, mediated through accumulated carbon reserves. In cyanobacteria, which possess an oxygenic photosynthesis, this serves to separate the O2 that is produced by photosynthesis from the O2-sensitive nitrogenase. However, in certain circumstances, oxygenic photosynthesis and N2 fixation coexist. Under these conditions, respiratory consumption of photosynthetically generated O2 may have an important role in minimizing O2-damage to nitrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号