首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
Although the dinophytes generally possess red‐algal‐derived secondary plastids, tertiary plastids originating from haptophyte and diatom ancestors are recognized in some lineages within the Dinophyta. However, little is known about the nuclear‐encoded genes of plastid‐targeted proteins from the dinophytes with diatom‐derived tertiary plastids. We analyzed the sequences of the nuclear psbO gene encoding oxygen‐evolving enhancer protein from various algae with red‐algal‐derived secondary and tertiary plastids. Based on our sequencing of 10 new genes and phylogenetic analysis of PsbO amino acid sequences from a wide taxon sampling of red algae and organisms with red‐algal‐derived plastids, dinophytes form three separate lineages: one composed of peridinin‐containing species with secondary plastids, and the other two having haptophyte‐ or diatom‐derived tertiary plastids and forming a robust monophyletic group with haptophytes and diatoms, respectively. Comparison of the N‐terminal sequences of PsbO proteins suggests that psbO genes from a dinophyte with diatom‐derived tertiary plastids (Kryptoperidinium) encode proteins that are targeted to the diatom plastid from the endosymbiotic diatom nucleus as in the secondary phototrophs, whereas the fucoxanthin‐containing dinophytes (Karenia and Karlodinium) have evolved an additional system of psbO genes for targeting the PsbO proteins to their haptophyte‐derived tertiary plastids from the host dinophyte nuclei.  相似文献   

2.
Dinoflagellates harbour diverse plastids obtained from several algal groups, including haptophytes, diatoms, cryptophytes, and prasinophytes. Their major plastid type with the accessory pigment peridinin is found in the vast majority of photosynthetic species. Some species of dinoflagellates have other aberrantly pigmented plastids. We sequenced the nuclear small subunit (SSU) ribosomal RNA (rRNA) gene of the "green" dinoflagellate Gymnodinium chlorophorum and show that it is sister to Lepidodinium viride, indicating that their common ancestor obtained the prasinophyte (or other green alga) plastid in one event. As the placement of dinoflagellate species that acquired green algal or haptophyte plastids is unclear from small and large subunit (LSU) rRNA trees, we tested the usefulness of the heat shock protein (Hsp) 90 gene for dinoflagellate phylogeny by sequencing it from four species with aberrant plastids (G. chlorophorum, Karlodinium micrum, Karenia brevis, and Karenia mikimotoi) plus Alexandrium tamarense, and constructing phylogenetic trees for Hsp90 and rRNAs, separately and together. Analyses of the Hsp90 and concatenated data suggest an ancestral origin of the peridinin-containing plastid, and two independent replacements of the peridinin plastid soon after the early radiation of the dinoflagellates. Thus, the Hsp90 gene seems to be a promising phylogenetic marker for dinoflagellate phylogeny.  相似文献   

3.
This study provides a phylogenetic/comparative approach to deciphering the processes underlying the evolution of plastid rRNA genes in genomes under relaxed functional constraints. Nonphotosynthetic green algal taxa that belong to two distinct classes, Chlorophyceae (Polytoma) and Trebouxiophyceae (Prototheca), were investigated. Similar to the situation described previously for plastid 16S rRNA genes in nonphotosynthetic land plants, nucleotide substitution levels, extent of structural variations, and percentage AT values are increased in nonphotosynthetic green algae compared to their closest photosynthetic relatives. However, the mutational processes appear to be different in many respects. First, with the increase in AT content, more transversions are noted in Polytoma and holoparasite angiosperms, while more transitions characterize the evolution of the 16S rDNA sequences in Prototheca. Second, although structural variations do accumulate in both Polytoma and Prototheca (as well as holoparasitic plastid 16S rRNAs), insertions as large as 1.6 kb characterize the plastid 16S rRNA genes in the former, whereas significantly smaller indels (not exceeding 24 bp) seem to be more prevalent in the latter group. The differences in evolutionary rates and patterns within and between lineages might be due to mutations in replication/repair-related genes; slipped-strand mispairing is likely the mechanism responsible for the expansion of insertions in Polytoma plastid 16S rRNA genes. Received: 29 December 2000 / Accepted: 18 May 2001  相似文献   

4.
Four eukaryotic lineages, namely, haptophytes, alveolates, cryptophytes, and heterokonts, contain in most cases photosynthetic and nonphotosynthetic members—the photosynthetic ones with secondary plastids with chl c as the main photosynthetic pigment. These four photosynthetic lineages were grouped together on the basis of their pigmentation and called chromalveolates, which is usually understood to imply loss of plastids in the nonphotosynthetic members. Despite the ecological and economic importance of this group of organisms, the phylogenetic relationships among these algae are only partially understood, and the so‐called chromalveolate hypothesis is very controversial. This review evaluates the evidence for and against this grouping and summarizes the present understanding of chromalveolate evolution. We also describe a testable hypothesis that is intended to accommodate current knowledge based on plastid and nuclear genomic data, discuss the implications of this model, and comment on areas that require further examination.  相似文献   

5.
The aim of this study was to compare the usefulness of two chloroplast-encoded genes (rpoA and rbcL) and the nuclear-encoded small subunit (SSU) ribosomal RNA for reconstructing phylogenetic relationships among diatoms at lower taxonomic levels. To this end, the rpoA and rbcL genes for selected centric and pennate diatoms were sequenced. The new rpoA and rbcL sequences, and an existing nuclear-encoded SSU rRNA data set, were subjected to weighted/unweighted parsimony, maximum likelihood, minimum evolution, and Bayesian analyses. All of the tree-building methods employed showed, based on the support values, that the rpoA gene was the most useful, relative to the rbcL and SSU rRNA genes, in determining phylogenetic relationships among the sampled diatoms. The support values for the relationships among the pennate lineages were, in many instances, greater in the rpoA trees than in the SSU rRNA trees. These results suggest that rpoA might be of value in determining phylogenetic relationships among pennate lineages.  相似文献   

6.
Dinoflagellates are a trophically diverse group of protists with photosynthetic and non-photosynthetic members that appears to incorporate and lose endosymbionts relatively easily. To trace the gain and loss of plastids in dinoflagellates, we have sequenced the nuclear small subunit rRNA gene of 28 photosynthetic and four non-photosynthetic species, and produced phylogenetic trees with a total of 81 dinoflagellate sequences. Patterns of plastid gain, loss, and replacement were plotted onto this phylogeny. With the exception of the apparently early-diverging Syndiniales and Noctilucales, all non-photosynthetic dinoflagellates are very likely to have had photosynthetic ancestors with peridinin-containing plastids. The same is true for all dinoflagellates with plastids other than the peridinin-containing plastid: their ancestors have replaced one type of plastid for another, in some cases most likely through a non-photosynthetic intermediate. Eight independent instances of plastid loss and three of replacement can be inferred from existing data, but as more non-photosynthetic lineages are characterized these numbers will surely grow. Received: 25 September 2000 / Accepted: 24 April 2001  相似文献   

7.
Hoppenrath M  Leander BS 《Protist》2007,158(2):209-227
Both the photosynthetic and heterotrophic forms of the only known marine benthic (sand-dwelling) species of Polykrikos, namely P. lebourae, were investigated using light and electron microscopy and molecular phylogenetic analyses. The pseudocolonies usually contained eight integrated zooids and two nuclei. Pseudocolonies consisting of four or five zooids and one nucleus were observed for the first time for this species; some of these reduced pseudocolonies contained plastids, while others were heterotrophic and contained taeniocyst-nematocyst complexes. The ultrastructure of the plastids in P. lebourae did not conform to the organization of thylakoids and enveloping membranes present in the peridinin-containing plastids of other photosynthetic dinoflagellates (i.e. stacks of 3 thylakoids and 3 outer membranes). Instead, the plastids in P. lebourae had thylakoids arranged in pairs and appeared to be enveloped by only two membranes. Molecular phylogenetic data using small subunit rDNA demonstrated that the photosynthetic and heterotrophic forms of P. lebourae represent two distinct clades. The more inclusive clade containing both forms of P. lebourae was most closely related to heterotrophic polykrikoids, namely P. kofoidii. These results led us to conclude that the photosynthetic and heterotrophic forms of P. lebourae are in fact two distinct lineages, and the heterotrophic form is described here as Polykrikos herdmanae n. sp.  相似文献   

8.
Summary The origin of plastids by either a single or multiple endosymbiotic event(s) and the nature of the progenitor(s) of plastids have been the subjects of much controversy. The sequence of the small subunit rRNA (Ssu rRNA) from the plastid of the chlorophyllc-containing algaCryptomonas is presented, allowing for the first time a comparison of this molecule from all of the major land plant and algal lineages. Using a distance matrix method, the phylogenetic relationships among representatives of these lineages have been inferred and the results indicate a common origin of plastids from a cyanobacterium-like ancestor. Within the plastid line of descent, there is a deep dichotomy between the chlorophyte/land plant lineage and the rhodophyte/chromophyte lineage, with the cyanelle ofCyanophora paradoxa forming the deepest branch in the latter group. Interestingly,Euglena gracilis and its colorless relativeAstasia longa are more related to the chromophytes than to the chlorophytes, raising once again the question of the origin of the euglenoid plastids.  相似文献   

9.
Plastid genomes of higher plants contain a conserved set of ribosomal protein genes. Although plastid translational activity is essential for cell survival in tobacco (Nicotiana tabacum), individual plastid ribosomal proteins can be nonessential. Candidates for nonessential plastid ribosomal proteins are ribosomal proteins identified as nonessential in bacteria and those whose genes were lost from the highly reduced plastid genomes of nonphotosynthetic plastid-bearing lineages (parasitic plants, apicomplexan protozoa). Here we report the reverse genetic analysis of seven plastid-encoded ribosomal proteins that meet these criteria. We have introduced knockout alleles for the corresponding genes into the tobacco plastid genome. Five of the targeted genes (ribosomal protein of the large subunit22 [rpl22], rpl23, rpl32, ribosomal protein of the small subunit3 [rps3], and rps16) were shown to be essential even under heterotrophic conditions, despite their loss in at least some parasitic plastid-bearing lineages. This suggests that nonphotosynthetic plastids show elevated rates of gene transfer to the nuclear genome. Knockout of two ribosomal protein genes, rps15 and rpl36, yielded homoplasmic transplastomic mutants, thus indicating nonessentiality. Whereas Δrps15 plants showed only a mild phenotype, Δrpl36 plants were severely impaired in photosynthesis and growth and, moreover, displayed greatly altered leaf morphology. This finding provides strong genetic evidence that chloroplast translational activity influences leaf development, presumably via a retrograde signaling pathway.  相似文献   

10.
The complete large subunit rRNA sequences from the red algaePalmaria palmataandGracilaria verrucosa,and from the nucleomorph of the cryptomonadGuillardia theta,were determined in order to assess their phylogenetic relationships relative to each other and to other eukaryotes. Neighbor-joining, maximum-parsimony, and maximum-likelihood trees were constructed on the basis of small subunit rRNA, large subunit rRNA, and a combination of both molecules. Our results support the hypothesis that the cryptomonad plastid is derived from a primitive red alga, in that an ancient common ancestor of rhodophytes and cryptomonad nucleomorphs is indicated. This cluster shows some affinity with chlorobionts, which could point to a monophyletic origin of green and red plastids. However, the exact branching order of the crown eukaryotes remains uncertain and further research is required.  相似文献   

11.
The chlorophyll c-containing algae comprise four major lineages: dinoflagellates, haptophytes, heterokonts, and cryptophytes. These four lineages have sometimes been grouped together based on their pigmentation, but cytological and rRNA data had suggested that they were not a monophyletic lineage. Some molecular data support monophyly of the plastids, while other plastid and host data suggest different relationships. It is uncontroversial that these groups have all acquired plastids from another eukaryote, probably from the red algal lineage, in a secondary endosymbiotic event, but the number and sequence of such event(s) remain controversial. Understanding chlorophyll c-containing plastid relationships is a first step towards determining the number of endosymbiotic events within the chromalveolates. We report here phylogenetic analyses using 10 plastid genes with representatives of all four chromalveolate lineages. This is the first organellar genome-scale analysis to include both haptophytes and dinoflagellates. Concatenated analyses support the monophyly of the chlorophyll c-containing plastids and suggest that cryptophyte plastids are the basal member of the chlorophyll c-containing plastid lineage. The gene psbA, which has at times been used for phylogenetic purposes, was found to differ from the other genes in its placement of the dinoflagellates and the haptophytes, and in its lack of support for monophyly of the green and red plastid lineages. Overall, the concatenated data are consistent with a single origin of chlorophyll c-containing plastids from red algae. However, these data cannot test several key hypothesis concerning chromalveolate host monophyly, and do not preclude the possibility of serial transfer of chlorophyll c-containing plastids among distantly related hosts.  相似文献   

12.
Plastids are widespread in plant and algal lineages. They are also exploited by some nonphotosynthetic protists, including malarial parasites, to support their diverse modes of life. However, cryptic plastids may exist in other nonphotosynthetic protists, which could be important in studies on the diversity and evolution of plastids. The parasite Perkinsus marinus, which causes mass mortality in oyster farms, is a nonphotosynthetic protist that is phylogenetically related to plastid-bearing dinoflagellates and apicomplexans. In this study, we searched for P. marinus methylerythritol phosphate (MEP) pathway genes, responsible for de novo isoprenoid synthesis in plastids, and determined the full-length gene sequences for 6 of 7 of these genes. Phylogenetic analyses revealed that each P. marinus gene clusters with orthologs from plastid-bearing eukaryotes, which have MEP pathway genes with essentially the same mosaic pattern of evolutionary origin. A new analytical method called sliding-window iteration of TargetP was developed to examine the distribution of targeting preferences. This analysis revealed that the sequenced genes encode bipartite targeting peptides that are characteristic of proteins targeted to secondary plastids originating from endosymbiosis of eukaryotic algae. These results support our idea that Perkinsus is a cryptic algal group containing nonphotosynthetic secondary plastids. In fact, immunofluorescent microscopy indicated that 1 of the MEP pathway enzymes, 1-deoxy-D-xylulose 5-phosphate reductoisomerase, was localized to small compartments near mitochondrion, which are possibly plastids. This tiny organelle seems to contain very low quantities of DNA or may even lack DNA entirely. The MEP pathway genes are a useful tool for investigating plastid evolution in both of the photosynthetic and nonphotosynthetic eukaryotes and led us to propose the hypothesis that ancestral "chromalveolates" harbored plastids before a secondary endosymbiotic event.  相似文献   

13.
Based on the recent hypothesis on the origin of eukaryotic phototrophs, red algae, green plants, and glaucophytes constitute the primary photosynthetic eukaryotes (whose plastids may have originated directly from a cyanobacterium-like prokaryote via primary endosymbiosis), whereas the plastids of other lineages of eukaryotic phototrophs appear to be the result of secondary or tertiary endosymbiotic events (involving a phototrophic eukaryote and a host cell). Although phylogenetic analyses using multiple plastid genes from a wide range of eukaryotic lineages have been carried out, some of the major phylogenetic relationships of plastids remain ambiguous or conflict between different phylogenetic methods used for nucleotide or amino acid substitutions. Therefore, an alternative methodology to infer the plastid phylogeny is needed. Here, we carried out a cladistic analysis of the loss of plastid genes after primary endosymbiosis using complete plastid genome sequences from a wide range of eukaryotic phototrophs. Since it is extremely unlikely that plastid genes are regained during plastid evolution, we used the irreversible Camin-Sokal model for our cladistic analysis of the loss of plastid genes. The cladistic analysis of the 274 plastid protein-coding genes resolved the 20 operational taxonomic units representing a wide range of eukaryotic lineages (including three secondary plastid-containing groups) into two large monophyletic groups with high bootstrap values: one corresponded to the red lineage and the other consisted of a large clade composed of the green lineage (green plants and Euglena) and the basal glaucophyte plastid. Although the sister relationship between the green lineage and the Glaucophyta was not resolved in recent phylogenetic studies using amino acid substitutions from multiple plastid genes, it is consistent with the rbcL gene phylogeny and with a recent phylogenetic study using multiple nuclear genes. In addition, our analysis robustly resolved the conflicting/ambiguous phylogenetic positions of secondary plastids in previous phylogenetic studies: the Euglena plastid was sister to the chlorophycean (Chlamydomonas) lineage, and the secondary plastids from the diatom (Odontiella) and cryptophyte (Guillardia) were monophyletic within the red lineage.  相似文献   

14.
15.
Summary An overview of recent molecular analyses regarding origins of plastids in algal lineages is presented. Since different phylogenetic analyses can yield contradictory views of algal plastid origins, we have examined the effect of two distance measurement methods and two distance matrix tree-building methods upon topologies for the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit nucleotide sequence data set. These results are contrasted to those from bootstrap parsimony analysis of nucleotide sequence data subsets. It is shown that the phylogenetic information contained within nucleotide sequences for the chloroplast-encoded gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, integral to photosynthesis, indicates an independent origin for this plastid gene in different plant taxa. This finding is contrasted to contrary results derived from 16S rRNA sequences. Possible explanations for discrepancies observed for these two different molecules are put forth. Other molecular sequence data which address questions of early plant evolution and the eubacterial origins of algal organelles are discussed. Offprint requests to: W. Martin  相似文献   

16.
Because the secondary plastids of the Euglenophyta and Chlorarachniophyta are very similar to green plant plastids in their pigment composition, it is generally considered that ancestral green algae were engulfed by other eukaryotic host cells to become the plastids of these two algal divisions. Recent molecular phylogenetic studies have attempted to resolve the phylogenetic positions of these plastids; however, almost all of the studies analyzed only plastid‐encoded genes. This limitation may affect the results of comparisons between genes from primary and secondary plastids, because genes in endosymbionts have a higher mutation rate than the genes of their host cells. Thus, the phylogeny of these secondary plastids must be elucidated using other molecular markers. Here, we compared the plastid‐targeting, nuclear‐encoded, oxygen‐evolving enhancer (psbO) genes from various green plants, the Euglenophyta and Chlorarachniophyta. A phylogenetic analysis based on the PsbO amino acid sequences indicated that the chlorarachniophyte plastids are positioned within the Chlorophyta (including Ulvophyceae, Chlorophyceae, and Prasinophyceae, but excluding Mesostigma). In contrast, plastids of the Euglenophyta and Mesostigma are positioned outside the Chlorophyta and Streptophyta. The relationship of these three phylogenetic groups was consistent with the grouping of the primary structures of the thylakoid‐targeting domain and its adjacent amino acids in the PsbO N‐terminal sequences. Furthermore, the serine‐X‐alanine (SXA) motif of PsbO was exactly the same in the Chlorarachniophyta and the prasinophycean Tetraselmis. Therefore, the chlorarachniophyte secondary plastids likely evolved from the ancestral Tetraselmis‐like alga within the Chlorophyta, whereas the Euglenophyte plastids may have originated from the unknown basal lineage of green plants.  相似文献   

17.
Within plastid-bearing species, the relative rates of evolution between mitochondrial and plastid genomes are poorly studied, but for the few lineages in which they have been explored, including land plants and green algae, the mitochondrial DNA mutation rate is nearly always estimated to be lower than or equal to that of the plastid DNA. Here, we show that in protists from three distinct lineages with secondary, red algal-derived plastids, the opposite is true: their mitochondrial genomes are evolving 5-30 times faster than their plastid genomes, even when the plastid is nonphotosynthetic. These findings have implications for understanding the origins and evolution of organelle genome architecture and the genes they encode.  相似文献   

18.
Chlorarachniophytes are amoeboflagellate cercozoans that acquired a plastid by secondary endosymbiosis. Chlorarachniophytes are the last major group of algae for which there is no completely sequenced plastid genome. Here we describe the 69.2-kbp chloroplast genome of the model chlorarachniophyte Bigelowiella natans. The genome is highly reduced in size compared with plastids of other photosynthetic algae and is closer in size to genomes of several nonphotosynthetic plastids. Unlike nonphotosynthetic plastids, however, the B. natans chloroplast genome has not sustained a massive loss of genes, and it retains nearly all of the functional photosynthesis-related genes represented in the genomes of other green algae. Instead, the genome is highly compacted and gene dense. The genes are organized with a strong strand bias, and several unusual rearrangements and inversions also characterize the genome; notably, an inversion in the small-subunit rRNA gene, a translocation of 3 genes in the major ribosomal protein operon, and the fragmentation of the cluster encoding the large photosystem proteins PsaA and PsaB. The chloroplast endosymbiont is known to be a green alga, but its evolutionary origin and relationship to other primary and secondary green plastids has been much debated. A recent hypothesis proposes that the endosymbionts of chlorarachniophytes and euglenids share a common origin (the Cabozoa hypothesis). We inferred phylogenies using individual and concatenated gene sequences for all genes in the genome. Concatenated gene phylogenies show a relationship between the B. natans plastid and the ulvophyte-trebouxiophyte-chlorophyte clade of green algae to the exclusion of Euglena. The B. natans plastid is thus not closely related to that of Euglena, which suggests that plastids originated independently in these 2 groups and the Cabozoa hypothesis is false.  相似文献   

19.
To probe the earliest evolutionary events attending the origin of the five known genome types (archaebacterial, eubacterial, nuclear, mitochondrial and plastid), we have analyzed sequences corresponding to a ubiquitous, highly conserved core of secondary structure in small subunit rRNA. Our results support (i) the existence of three primary lineages (archaebacterial, eubacterial, and nuclear), (ii) a specific eubacterial ancestry for plastids and mitochondria (plant, animal, fungal), and (iii) an endosymbiotic, evolutionary origin of the two types of organelle from within distinct groups of eubacteria (blue-green algae (cyanobacteria) in the case of plastids, nonphotosynthetic aerobic bacteria in the case of mitochondria). In addition, our analysis suggests (iv) a biphyletic origin of mitochondria, with animal and fungal mitochondria branching together but separately from plant mitochondria, and (v) a monophyletic origin of plastids. The method described here provides a powerful and generally applicable molecular taxonomic approach towards a global phylogeny encompassing all organisms and organelles.  相似文献   

20.
The peridinin‐containing plastid found in most photosynthetic dinoflagellates is thought to have been replaced in a few lineages by plastids of chlorophyte, diatom, or haptophyte origin. Other distinct lineages of phagotrophic dinoflagellates retain functional plastids obtained from algal prey for different durations and with varying source species specificity. 18S rRNA gene sequence analyses have placed a novel gymnodinoid dinoflagellate isolated from the Ross Sea (RSD) in the Kareniaceae, a family of dinoflagellates with permanent plastids of haptophyte origin. In contrast to other species in this family, the RSD contains kleptoplastids sequestered from its prey, Phaeocystis antarctica. Culture experiments were employed to determine whether the RSD fed selectively on P. antarctica when offered in combination with another polar haptophyte or cryptophyte species, and whether the RSD, isolated from its prey and starved, would take up plastids from P. antarctica or from other polar haptophyte or cryptophyte species. Evidence was obtained for selective feeding on P. antarctica, plastid uptake from P. antarctica, and increased RSD growth in the presence of P. antarctica. The presence of a peduncle‐like structure in the RSD suggests that kleptoplasts are obtained by myzocytosis. RSD cells incubated without P. antarctica were capable of survival for at least 29.5 months. This remarkable longevity of the RSD's kleptoplasts and its species specificity for prey and plastid source is consistent with its prolonged co‐evolution with P. antarctica. It may also reflect the presence of a plastid protein import mechanism and genes transferred to the dinokaryon from a lost permanent haptophyte plastid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号