首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文研究了金耳菌丝体多糖(TMP)对实验性2型糖尿病大鼠血糖、血脂、胰岛素敏感性和抗氧化能力的影响。采用烟酰胺,链脲佐菌素和高脂饲料诱导2型糖尿病大鼠模型,以50和100mg/(kg.d)剂量的TMP连续灌胃48d,监测血糖,测定血清胰岛素、体重、脂代谢及抗氧化系统部分相关指标,并进行口服糖耐量实验。结果显示,TMP可明显降低2型糖尿病大鼠的血清葡萄糖、总胆固醇、甘油三酯和丙二醛水平,并极显著提高受试模型鼠的胰岛素敏感指数,血清超氧化物歧化酶活性和肝脏过氧化氢酶活性。此外,TMP能显著降低糖耐量实验中糖负荷后120min时糖尿病大鼠的血糖含量。上述结果表明TMP可有效降低实验性2型糖尿病大鼠的血糖水平,纠正脂代谢紊乱,改善胰岛素抵抗,增强抗氧化能力。  相似文献   

2.
In the present study, the putative antihyperglycemic and antioxidant effects of a flavanone, naringenin, were evaluated in comparison with those of glyclazide, a standard drug for therapy of diabetes mellitus. Diabetes was induced experimentally in 12-h-fasted rats by intraperitoneal injections of first streptozotocin (50 mg/kg b.w.) and then of nicotinamide (110 mg/kg b.w.) after a 15-min interval. Untreated diabetic rats revealed the following in comparison with normal rats: significantly higher mean levels of blood glucose and glycosylated hemoglobin, significantly lower mean levels of serum insulin, significantly lower mean activities of pancreatic antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase), significantly lower mean levels of plasma non-enzymatic antioxidants (reduced glutathione, vitamin C , vitamin E), significantly elevated mean levels of pancreatic malondialdehyde (MDA) and significantly elevated mean activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Following oral administration of naringenin (50 mg/kg b.w./day) to diabetic rats for 21 days, the following observations were made in comparison with untreated diabetic rats: significantly lower mean levels of fasting blood glucose and glycosylated hemoglobin, significantly elevated serum insulin levels, significantly higher mean activities of pancreatic enzymatic antioxidants, significantly higher mean levels of plasma non-enzymatic antioxidants, lower mean pancreatic tissue levels of MDA and lower mean activities of ALT, AST, ALP and LDH in serum. The values obtained in the naringenin-treated animals approximated those observed in glyclazide-treated animals. Histopathological studies appeared to suggest a protective effect of naringenin on the pancreatic tissue in diabetic rats. These results suggest that naringenin exhibits antihyperglycemic and antioxidant effects in experimental diabetic rats.  相似文献   

3.
Diabetes is characterized by hyperglycemia resulting from defects in pancreatic insulin secretion and/or impaired target cell responsiveness to insulin, and Artemisia afra Jacq. is widely used in South Africa to treat the disease, but the mechanism of action is yet to be elucidated. This study explored the effect of oral administration of aqueous leaf extract of A. afra on the pancreas of streptozotocin-induced diabetic rats. We found that the extract significantly reduced blood glucose levels, accompanied by an increase in the serum insulin concentration. Moreover, the antioxidant enzymic activities of glutathione peroxidase, glutathione reductase, and superoxide dismutase also improved significantly after treatment with the extract. Increased pancreatic lipid peroxidation in the diabetic rats was also normalized by the extract. This study indicates that A. afra possesses hypoglycemic and antioxidant activities. Our findings suggest that the herb might exert its anti-diabetic activity by regenerating pancreatic beta cells, thereby stimulating the release of insulin.  相似文献   

4.
Endothelial dysfunction develops as a result of oxidative stress and is responsible for diabetic vascular complications. We investigated the effects of selenium on endothelial dysfunction and oxidative stress in type 2 diabetic rats. Male Wistar rats were divided into five groups: controls, untreated diabetics, and diabetics treated with 180, 300, 500 mcg/kg selenium each day. Diabetes was induced by a single intraperitoneal injection of low dose streptozotocin to rats fed a high fat diet. Endothelium-dependent and -independent relaxations were measured in the thoracic aorta. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and endothelial nitric oxide synthase (eNOS) mRNA expressions were analyzed using real-time polymerase chain reaction (RT-PCR). Fasting blood glucose, lipid profile, lipid oxidation, insulin and nitric oxide were measured in blood samples. Malondialdehyde, superoxide dismutase, catalase and glutathione peroxidase levels were measured in liver samples. RT-PCR showed that selenium reversed increased NADPH oxidase expression and decreased eNOS expression to control levels. Selenium also improved the impairment of endothelium-dependent vasorelaxation in the diabetic aorta. Selenium treatment significantly decreased blood glucose, cholesterol and triglyceride levels, and enhanced the antioxidant status in diabetic rats. Our findings suggest that selenium restores a normal metabolic profile and ameliorates vascular responses and endothelial dysfunction in diabetes by regulating antioxidant enzyme and nitric oxide release.  相似文献   

5.
This research was delineated to explore the efficacy of selenium nanoparticles delivered in liposomes (L-Se) in the mitigation of type-2 diabetes mellitus. Adult female Wistar rats were assigned into four groups: group I, the normal control group in which the rats received normal saline solution orally; group II, the diabetic control group in which the rats were injected intraperitoneally with a single dose of streptozotocin (STZ) for induction of diabetes; group III, the metformin (Met)-treated group in which the diabetic rats were treated orally with Met; and group IV, the L-Se-treated group in which the diabetic rats were treated orally with L-Se. All treatments were delivered for 21 days. Blood and pancreas tissue samples were obtained for biochemical analysis, immunohistochemical examinations, and histopathological investigation. The L-Se-treated group showed significant drop in serum glucose and pancreatic malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor-α (TNF-α), and prostaglandin F2α (PGF2α) levels associated with significant rise in serum insulin and pancreatic glutathione, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) values, in addition to significant improvement in the immunohistochemical indices (insulin and glucagon). Aforementioned results are appreciated by the histopathological findings of pancreatic tissue. In conclusion, our data have brought about compelling evidence favoring the antidiabetic potency of elemental selenium nanoparticles delivered in liposomes through preservation of pancreatic β cell integrity with consequent increment of insulin secretion and in turn glucose depletion, repression of oxidative stress, potentiation of the antioxidant defense system, and inhibition of pancreatic inflammation.  相似文献   

6.
7.
There is mounting evidence demonstrating causative links between hyperglycemia, oxidative stress, and insulin resistance, the core pathophysiological features of type 2 diabetes mellitus. Using a combinational approach, we synthesized a vanadium–antioxidant (i.e., l-ascorbic acid) complex and examined its effect on insulin resistance and oxidative stress. This study was designed to examine whether vanadyl(IV)-ascorbate complex (VOAsc) would reduce oxidative stress, hyperglycemia, and insulin resistance in high-fat high-sucrose diet (HFSD)-induced type 2 diabetes in mice. Male C57BL/6J mice were fed a HFSD for 12 weeks to induce insulin resistance, rendering them diabetic. Diabetic mice were treated with rosiglitazone, sodium l-ascorbate, or VOAsc. At the end of treatment, fasting blood glucose, fasting serum insulin, homeostasis model assessment-insulin resistance index, and serum adipocytokine levels were measured. Serum levels of nitric oxide (NO) parameters were also determined. The liver was isolated and used for determination of malondialdehyde, reduced glutathione, and catalase levels, and superoxide dismutase and glutathione peroxidase activities. VOAsc groups exhibited significant reductions in serum adipocytokine and NO levels, and oxidative stress parameters compared to the corresponding values in the untreated diabetic mice. The results indicated that VOAsc is non-toxic. In conclusion, we identified VOAsc as a potentially effective adjunct therapy for the management of type 2 diabetes.  相似文献   

8.
Lung structural changes and immunoreactivity of endothelial (eNOS)- and inducible nitric oxide synthase (iNOS) were investigated by light microscopy in lungs of treated and untreated diabetic rats. Diabetes was induced by a single intraperitoneal (i.p.) injection of 65 mg kg(-1) streptozotocin (STZ) in Wistar albino male rats. Diabetic rats received daily i.p. doses of dexamethasone (2 mg kg(-1)), leptin (0.5 microg kg(-1)) and intramuscular insulin (20 U kg(-1)) or a combination of these drugs for 1 week starting 4 weeks after the STZ injections. After treatment, the blood levels of glucose, leptin, insulin and nitrate/nitrite (NO(3) (-)/NO(2) (-)) were measured. Dilatation of alveoli and alveolar ducts, partial alveolar wall thickening and increased eNOS- and iNOS characterized the diabetic rat lungs. High blood glucose and nitrate/nitrite levels as well as low insulin and leptin levels were also present. Treatment with insulin, dexamethasone and a combination of these drugs resulted in improvement of the structural and immunohistochemical abnormalities. The most effective treatment was insulin therapy. Leptin administration resulted in increased relative amounts of extracellular material, which led to noticeable respiratory efficiency in the diabetic rat lungs. All treatments except leptin lowered blood glucose levels. The combination of insulin and dexamethasone increased blood leptin and insulin, while the remaining diabetic rats had blood with low leptin and insulin concentrations. These results suggest that therapy with insulin plus dexamethasone but not therapy with leptin is beneficial for diabetics.  相似文献   

9.
Diabetes mellitus is associated to a reduction of antioxidant defenses that leads to oxidative stress and complications in diabetic individuals. The present study was undertaken to investigate the effect of selenium on blood biochemical parameters, antioxidant enzyme activities, and tissue zinc levels in alloxan-induced diabetic rats fed a zinc-deficient diet. The rats were divided into two groups; the first group was fed a zinc-sufficient diet, while the second group was fed a zinc-deficient diet. Half of each group was treated orally with 0.5 mg/kg sodium selenite. Tissue and blood samples were taken from all animals after 28 days of treatment. At the end of the experiment, the body weight gain and food intake of the zinc-deficient diabetic animals were lower than that of zinc-adequate diabetic animals. Inadequate dietary zinc intake increased glucose, lipids, triglycerides, urea, and liver lipid peroxidation levels. In contrast, serum protein, reduced glutathione, plasma zinc and tissue levels were decreased. A zinc-deficient diet led also to an increase in serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and liver glutathione-S-transferase and to a decrease in serum alkaline phosphatase activity and glutathione peroxidase. Selenium treatment ameliorated all the values approximately to their normal levels. In conclusion, selenium supplementation presumably acting as an antioxidant led to an improvement of insulin activity, significantly reducing the severity of zinc deficiency in diabetes.  相似文献   

10.
Diabetes is known to involve oxidative stress and changes in lipid metabolism. Many secondary plant metabolites have been shown to possess antioxidant activities, improving the effects of oxidative stress on diabetes. This study evaluated the effects of extracts from Gongronema latifolium leaves on antioxidant enzymes and lipid profile in a rat model of non insulin dependent diabetes mellitus (NIDDM). The results confirmed that the untreated diabetic rats were subjected to oxidative stress as indicated by significantly abnormal activities of their scavenging enzymes (low superoxide dismutase and glutathione peroxide activities), compared to treated diabetic rats, and in the extent of lipid peroxidation (high malondialdehyde levels) present in the hepatocytes. The ethanolic extract of G. latifolium leaves possessed antioxidant activity as shown by increased superoxide dismutase and glutathione peroxidase activities and decreases in malondialdehyde levels. High levels of triglycerides and total cholesterol, which are typical of the diabetic condition, were also found in our rat models of diabetes. The ethanolic extract also significantly decreased triglyceride levels and normalized total cholesterol concentration.  相似文献   

11.
The present study was designed to investigate the effect of MetVO-salen in ameliorating diabetes and oxidative stress in the pancreas of diabetic rats. Streptozotocin (STZ)-induced diabetic rats were treated with MetVO-salen complex intraperitonially (0.3 and 0.6?mg/kg) thrice a week and continued for 8?weeks. Total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides in serum, and blood glucose were estimated. Furthermore, oxidative stress in rats was also investigated in terms of superoxide dismutase (SOD), catalase, lipid peroxidation, and glutathione (GSH). In addition, the anti-diabetic activity of MetVO-salen was also investigated by assessing histopathological, immunohistochemical in terms of endothelial nitric oxide synthase expression, and apoptotic events in pancreas. Treatment with MetVO-salen complex reduced the blood glucose level and significantly altered the serum biochemical parameters of diabetic rats. Treatment with above complex decreased the lipid peroxidation and the antioxidant enzymes such as SOD, CAT, and GSH to near-control levels. Histopathological, immunohistochemical, and apoptotic studies also revealed that MetVO-salen-induced amelioration of the diabetic state appears to be significant to the preservation of a functional portion of the pancreatic β cells which initially prevent STZ toxicity. This study provides new direction for the management of diabetes but needs further clinical evaluation.  相似文献   

12.
Previous studies suggest a protective effect of vitamin D3 on zinc deficiency-induced insulin secretion and on pancreas β-cell function. The aim of this study was to investigate the effect of vitamin D on blood biochemical parameters, tissue zinc and liver glutathione in diabetic rats fed a zinc-deficient diet. For that purpose, Alloxan-induced diabetic rats were divided into four groups. The first group was fed a zinc-sufficient diet while the second group was fed a zinc-deficient diet. The third and fourth groups received zinc-sufficient or zinc-deficient diets plus oral vitamin D3 for 27 days. At the end of the experiment, blood, femur, pancreas, kidney and liver samples were taken from all rats. The serum, femur, pancreas, kidney and liver zinc concentrations, liver glutathione, serum alkaline phosphatase activity, daily body weight gain and food intake were lower in the zinc-deficient rats in comparison with those receiving adequate amounts of zinc. These values were increased in the zinc-deficient group that was supplemented with vitamin D3. The serum total cholesterol, triglycerides, total protein, urea, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and blood glucose values were higher in rats fed a zinc adequate diet, but their concentrations were decreased by vitamin D3 supplementation. The serum total protein levels were not changed by zinc deficiency and vitamin D3 supplementation. These results suggest that vitamin D3 modulates tissue zinc, liver glutathione and blood biochemical values in diabetic rats fed a zinc-deficient diet.  相似文献   

13.
本文评价了芦笋老茎澄清汁(CAJ)的降血糖作用,并对其降血糖机制进行了初步探讨。腹腔注射STZ制备类似1型糖尿病大鼠模型,以0.6,1.2和2.0 g/kg体重剂量的CAJ连续灌胃21 d,监测血糖,测定糖化血清蛋白、血清胰岛素、肝糖原、脂代谢及抗氧化系统部分相关指标。结果显示,CAJ可明显降低糖尿病大鼠血清中葡萄糖、糖化血清蛋白、总胆固醇和MDA含量,并显著提高受试模型鼠的血清胰岛素水平、肝糖原含量、血清SOD活性、肝脏SOD、GSH-Px和CAT的活性。上述结果表明CAJ可明显降低糖尿病大鼠的血糖水平,刺激胰岛素分泌,调节血脂,增强抗氧化能力。  相似文献   

14.
Chaudhry J  Ghosh NN  Roy K  Chandra R 《Life sciences》2007,80(12):1135-1142
Thiazolidinediones (TZDs) are a new class of antidiabetic drugs, having an insulin sensitizing effect in patients with type 2 diabetes. The contribution of oxidative stress from the standpoint of lipid and protein damage, alteration in endogenous antioxidant enzymes and effects of newly synthesized compounds, 5-[4-2-(6,7-Dimethyl-1,2,3,4-tetrahydro-2-oxo-4-quinoxalinyl)ethoxy]phenyl]methylene]thiazolid- ine-2,4-dione, (C(1)) in normal/alloxan-induced diabetic rats form the focus area of this study. Its effect was compared to two well-known TZDs, namely pioglitazone and rosiglitazone. It has been concluded from results that after thirty days of administration of C(1), Pg and Rg in alloxan-induced diabetic animal groups, the blood glucose level decreased, more remarkably in C(1) treated group. Also oxidative damage has been studied by estimating hepatic superoxide dismutase (SOD) activity, which was found to be increased (p<0.001 vs. control). An inverse change in SOD values between hepatic and pancreatic/kidney tissues were observed. Treatment with the test compounds lowered the activity of SOD in liver while increased its activity in kidney and pancreas. Similar normalizing effect of C(1) on liver, pancreatic and renal catalase (CAT)/ glutathione peroxidase (GPx) activities were pronounced in diabetic rats (p<0.001 vs. diabetic rats). Decreased reduced glutathione (GSH) content, found in diabetic animals, was significantly elevated to normal levels by C(1) treatment. The treatment with C(1) also decreased the levels of nitric oxide and increased the activities of glutathione-s-transferase and glutathione reductase, as compared to diabetic animals. Evidence of oxidative damage to lipids and proteins was shown through the quantification of protein carbonyl (in tissues) and malondialdehyde levels (both serum and tissues). It was observed that the protein/lipid damage in diabetic rats was improved by treatment with C(1). Total antioxidant activity (TAA) was found to be enhanced in C(1) treated rats (p>0.05 vs. group3, p<0.001 vs. group2, p<0.001 vs. group 4). These results suggest that the newly synthesized TZD derivative (C(1)) has a potential to act as antihyperglycemic and antioxidant agent. In addition, for all parameters checked, it has better efficacy than rosiglitazone and is as effective as pioglitazone.  相似文献   

15.
本文研究了富硒发酵毛头鬼伞(鸡腿菇)Coprinus comatus菌丝体对四氧嘧啶致糖尿病小鼠抗氧化和降血糖的影响。四氧嘧啶建立糖尿病小鼠模型后,将富硒发酵毛头鬼伞菌丝均匀混入饲料中,由小鼠自由取食进行治疗,3周后观察富硒毛头鬼伞菌丝对糖尿病小鼠血糖、MDA、SOD和GSH-Px的影响。结果发现,采用富硒发酵毛头鬼伞菌丝进行治疗后,糖尿病小鼠血糖明显降低;血清和组织中MDA含量显著下降;血清和组织中的SOD和GSH-Px的活力明显的增加。由此推断,富硒发酵毛头鬼伞菌丝对四氧嘧啶致糖尿病小鼠的降血糖效果可能是通过提高机体抗氧化能力来实现的。  相似文献   

16.
The purpose of this study was to investigate the antioxidant role of coumarin on streptozotocin-nicotinamide-induced Type 2 diabetic rats. In experimental rats, the levels of plasma glucose, insulin, and the levels of thiobarbituric acid reactive substances, lipid hydroperoxides, conjugated dienes, and the activities of superoxide dismutase, catalase, glutathione-S-transferase, and glutathione peroxidase were assayed in liver and kidney. Diabetic rats showed elevated levels of plasma glucose and lipid peroxidation markers and reduced plasma insulin and antioxidant enzymes. Oral administration of coumarin resulted in a significant reduction in the plasma glucose and lipid peroxides and a significant increase in the plasma insulin and antioxidant enzymes. Chronic treatment of coumarin remarkably restored the normal status of the histopathological changes observed in the selected tissues. It can be concluded that coumarin has antioxidant effect in Type 2 diabetic rats.  相似文献   

17.
Antidiabetic and antoxidant effects of S-methyl cysteine sulfoxide (SMCS) isolated from A. cepa and two standard drugs, glibenclamide and insulin were studied and compared in alloxan diabetic rats after using each of them for treatment for two months. These drugs ameliorated the diabetic condition significantly, viz. maintenance of body weight and control of blood sugar in rats. Further they lowered the levels of malondialdehyde, hydroperoxide and conjugated dienes in tissues exhibiting antioxidant effect on lipid peroxidation in experimental diabetes. This is achieved by their stimulating effects on glucose utilization and the antioxidant enzymes, viz. superoxide dismutase and catalase. The probable mechanism of action of SMCS and glibenclamide may be partly dependent on the stimulation of insulin secretions and partly due to their individual actions. In the amelioration of diabetes the standard drugs showed a better action, but as an antioxidant SMCS proved to be a better one.  相似文献   

18.
Diabetes mellitus is the most common endocrine disorder that affects more than 285 million people worldwide. The purpose of this study was to investigate the effect of mesenchymal stem cells (MSCs) from the bone marrow of albino rats, on hyperglycemia, hyperlipidemia, and oxidative stress induced by intraperitoneal injection (i.p.) of alloxan at a dose of 150 mg/kg in rats. Injection of alloxan into rats resulted in a significant increase in serum glucose, total cholesterol, triglyceride, low density lipoprotein cholesterol, and sialic acid level and a significant decrease in serum insulin, high density lipoprotein-cholesterol, vitamin E, and liver glycogen as compared to their corresponding controls. Also, oxidative stress was noticed in pancreatic tissue as evidenced by a significant decrease in glutathione level, superoxide dismutase, glutathione-S-transferase activities, also a significant increase in malondialdehyde and nitric oxide levels when compared to control group. Treatment of diabetic rats with MSCs stem cells significantly prevented these alterations and attenuated alloxan-induced oxidative stress. In conclusion, rat bone marrow harbors cells that have the capacity to differentiate into functional insulin-producing cells capable of controlling hyperglycemia, hyperlipidemia, and oxidative stress in diabetic rats. This may be helpful in the prevention of diabetic complications associated with oxidative stress.  相似文献   

19.
Quercitrin, a bio flavonoid, was investigated for its antioxidant potential in streptozotocin (STZ)-induced diabetic rats. Rats were induced diabetic by a single intraperitoneal injection of streptozotocin (50 mg/kg). The levels of fasting plasma glucose and insulin were estimated. Lipid peroxidative products and antioxidants were estimated in pancreas, liver, and kidney. Histopathological studies were carried out in these tissues. A significant (P < 0.05) increase in the levels of fasting plasma glucose and lipid peroxidative products (thiobarbituric acid reactive substances and lipid hydroperoxides) and a significant (P < 0.05) decrease in plasma insulin, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and nonenzymic antioxidants (reduced glutathione, vitamin C, and E) in diabetic pancreas, liver, and kidney were observed. Oral administration of quercitrin (30 mg/kg) for a period of 30 days significantly (P < 0.05) decreased fasting plasma glucose, increased insulin levels, and improved the antioxidant status of diabetic rats by decreasing lipid peroxidative products and increasing enzymic and nonenzymic antioxidants. Normal rats treated with quercitrin (30 mg/kg) showed no significant (P < 0.05) effect on any of the parameters studied. Histopathological studies of the pancreas, liver, and kidney showed the protective role of quercitrin. Thus, our study clearly shows that quercitrin has antioxidant effect in STZ-induced experimental diabetes.  相似文献   

20.
In this paper, the antidiabetic effects of cysteinyl metformin (CM), a newly synthesized agent, were investigated to evaluate the hypoglycemic/hypolipidemic effects by measuring blood glucose, triglyceride and insulin levels in CM- and metformin-treated diabetic rats. Two diabetic models were used: (1) an alloxan-induced model in which diabetes was produced by alloxan (200 mg/kg, i.p.), then rats were treated with CM (300, 100 and 33 mg/kg) for 14 days; (2) a streptozocin-induced model in which diabetes was produced by streptozocin (30 mg/kg, i.p.) and a sustained high lipid diet, then rats were treated with CM for 8 weeks. The hypoglycemic effect of CM exceeded that of metformin while the hypolipidemic effect was similar. In addition, CM increased the blood insulin level of the alloxan-induced experimental animals (which had an insulin deficiency), but reduced the insulin level of the streptozocin-induced animals (which had an insulin excess), suggesting that CM improves pancreatic beta-cell function. The effects of CM, metformin and cysteine on the antioxidant defense system in alloxan-induced rats were also studied. The serum malondialdehyde (MDA) level was determined to provide evidence for lipid peroxidation, All the groups of animals given CM, metformin and cysteine exhibited less severe oxidative stress than the diabetic group. Then, several key antioxidants such as superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT) and the pancreatic exocrine enzyme amylase (AMS) were measured. CM restored the activity of all these agents to nearly normal values while metformin and cysteine merely restored the activity of SOD. At the end of our study, the animals were sacrificed by decapitation and the liver, kidney and pancreas were weighed to allow investigation of organ edema. The results obtained showed that CM corrected the organ edema of the diabetic rats. All these findings suggested that CM has a protective effect on the antioxidant defense system and beta-cell dysfunction in alloxan-induced diabetic rats. All these results suggest that CM is a potential candidate for the future treatment of both type 1 and type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号