首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 675 毫秒
1.
Oxidative stress is believed to induce dysfunction of the bone remodeling process and be associated with progressive loss of bone mass. The peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is a master controller during mitochondrial biogenesis and the antioxidant response. We postulated that PGC-1α could function as a cyto-protective e?ector in mesenchymal stem cells (MSCs) under oxidative stress conditions. In this study, diabetic serum was firstly used to treat MSCs to induce oxidative damage. The anti-oxidative protective effects of PGC-1α overexpression on MSCs, as well as MSCs’ osteogenesis and angiogenic regulation effects were investigated in vitro. Results showed that diabetic conditions induced significantly increase of intracellular oxidative damage and mitochondrial permeability transition pore (mPTP) opening activity, decrease of cellular viability, and osteogenic differentiation and pro-angiogenic regulation effects of MSCs. However, the diabetic conditions induced oxidative impair on MSCs were significantly alleviated via PGC-1α overexpression under diabetic conditions. Taken together, this study indicates the anti-oxidative treatment potential of PGC-1α regulation as a promising strategy to promote coupling pro-osteogenesis and pro-angiogenesis effects of MSCs.  相似文献   

2.
BackgroundHyperglycemia and hyper oxidative stress are indicators of diabetes mellitus which is also accompanied with decreased levels of antioxidant enzymes. While oxidative stress is important in increasing insulin secretion and controlling blood sugar level at the same time excess oxidative stress leads to the destruction of beta cells of pancreas resulting in to low insulin production and hyperglycemia. A balance between the levels of oxidative radicals and insulin production is needed, but is not defined yet. Hyperglycemia also leads to hyperlipidemia which can contribute to various health conditions like cardiovascular diseases.ObjectivesThis study was designed to study the oxidative stress and lipid levels in diabetic rats. This also was designed to elucidate the effect of Dhanwantaram Kashayam, an Ayurvedic polyphenolic derived from plants on lipid metabolism and oxidative radical scavenging in diabetic rats.MethodsRats were made diabetic by injecting streptozotocin. Different enzymes involved in oxidative radical scavenging and lipid profiles including triglycerides, total cholesterol, free fatty acids and phospholipids were estimated using standard methods reported elsewhere.ResultsLevel of antioxidant enzymes were lower in diabetic rats compared to normal controls. Administration of Dhanwantaram Kashayam restored the enzyme activity as well as reduced levels of different lipids in diabetic rats.ConclusionsAdministration of Dhanwantaram Kashayam increased the activity levels of antioxidant enzymes and reduced the levels of total cholesterol, phospholipids and triglycerides. The results of this study point to the possibility of developing Dhanwantaram Kashayam as a dietary supplement which can alleviate the complications associated with diabetes or prevent them altogether.  相似文献   

3.
目的:研究基质细胞衍生因子-1(SDF-1)/CXCR4轴在骨髓间充质干细胞迁徙到受损胰腺中的作用。方法:密度梯度离心、贴壁培养骨髓间充质干细胞,建立STZ诱导糖尿病模型并制备正常和受损胰腺组织提取液,利用Transwell小室体外迁移体系观察不同浓度SDF-1和不同组织提取液对骨髓间充质干细胞的趋化作用,及SDF-1/CXCR4特异抑制剂AMD3100对骨髓间充质干细胞迁移的影响。结果:成功培养了骨髓间充质干细胞并建立了糖尿病大鼠模型。SDF-l对骨髓间充质干细胞有剂量依赖性的趋化作用,造模1周的胰腺组织提取液对骨髓间充质干细胞有明显的趋化作用,而这种作用可部分被SDF-1受体CXCR4的抑制剂AMD3100抑制。结论:受损胰腺组织提取液对骨髓间充质干细胞有明显的趋化作用,SDF-1/CXCR4轴可能在组织提取液趋化骨髓间充质干细胞迁移中起主要的作用。  相似文献   

4.
Diabetes mellitus (DM) is one of the most serious threats in the 21th century throughout the human population that needs to be addressed cautiously. Nowadays, stem cell injection is considered among the most promising protocols for DM therapy; owing to its marked tissues and organs repair capability. Therefore, our 4 weeks study was undertaken to elucidate the probable beneficial effects of two types of adult mesenchymal stem cells (MSCs) on metabolism disturbance and some tissue function defects in diabetic rats. Animals were classified into 4 groups; the control group, the diabetic group, the diabetic group received a single dose of adipose tissue-derived MSCs and the diabetic group received a single dose of bone marrow-derived MSCs. Herein, both MSCs treated groups markedly reduced hyperglycemia resulting from diabetes induction via lowering serum glucose and rising insulin and C-peptide levels, compared to the diabetic group. Moreover, the increased lipid fractions levels were reverted back to near normal values as a consequence to MSCs injection compared to the diabetic untreated rats. Furthermore, both MSCs types were found to have hepato-renal protective effects indicated through the decreased serum levels of both liver and kidney functions markers in the treated diabetic rats. Taken together, our results highlighted the therapeutic benefits of both MSCs types in alleviating metabolic anomalies and hepato-renal diabetic complications.  相似文献   

5.
移植骨髓间充质干细胞治疗大鼠糖尿病的研究   总被引:1,自引:0,他引:1  
目的 通过移植骨髓间充质干细胞(mesenchymal stem cell,MSC)的方法试治疗大鼠糖尿病。方法 贴壁生长的MSC与大鼠胰腺的细胞共培养以检测其向胰岛细胞分化的潜能。并将体外培养扩增的MSC移植入糖尿病大鼠体内,观测其能否改善糖尿病病情及其在大鼠体内微环境中的分化情况。结果 共培养法可使MSC分化为胰岛样细胞。对大鼠的MSC移植能明显缓解糖尿病病情。结论 MSC移植的方法对大鼠糖尿病有一定的治疗作用。  相似文献   

6.
The effect of atorvastatin (Lipitor) on diabetes-induced changes in plasma lipids, oxidative stress and the ability of aortic tissues to generate prostacyclin was studied in streptozotocin diabetic rats. In diabetic rats, plasma total cholesterol, triglycerides and serum glucose significantly increased compared to nondiabetic rats. Atorvastatin administration to diabetic rats did not affect hyperglycemia but significantly reduced plasma total cholesterol and triglycerides compared to diabetic rats. The oxidative stress markers urinary isoprostane, liver thiobarbituric acid reactive substances (TBARS) and plasma protein carbonyl content significantly increased in diabetic rats compared to nondiabetic rats. Atorvastatin admnistration to diabetic rats significantly reduced oxidative stress levels compared to diabetic rats, but urinary isoprostane and liver TBARS remained significantly higher than nondiabetic rats. Prostacyclin (PGI(2)) generation by aortic tissues significantly decreased in diabetic rats compared to nondiabetic rats. Atorvastatin administration to diabetic rats did not reverse that inhibition. These results were discussed in the light of the possible effects of hyperglycemia and statins on NAD(P)H-oxidase and cyclooxygenase-2 activities and the genetic difference between rats and other mammals regarding the level of vascular superoxide dismutase (SOD) activity.  相似文献   

7.
BackgroundDiabetes mellitus has become the third human killer following cancer and cardiovascular disease. Millions of patients, often children, suffer from type 1 diabetes (T1D). Stem cells created hopes to regenerate damaged body tissues and restore their function.AimThis work aimed at clarifying and comparing the therapeutic potential of differentiated and non-differentiated mesenchymal stem cells (MSCs) as a new line of therapy for T1D.Methods40 Female albino rats divided into group I (control): 10 rats and group II (diabetic), III and IV, 10 rats in each, were injected with streptozotocin (50 mg/kg body weight). Group III (MSCs) were transplanted with bone marrow derived MSCs from male rats and group IV (IPCs) with differentiated insulin producing cells. Blood and pancreatic tissue samples were taken from all rats for biochemical and histological studies.ResultsMSCs reduced hyperglycemia in diabetic rats on day 15 while IPCs normalizes blood glucose level on day 7. Histological and morphometric analysis of pancreas of experimental diabetic rats showed improvement in MSCs-treated group but in IPCs-treated group, β-cells insulin immunoreactions were obviously returned to normal, with normal distribution of β-cells in the center and other cells at the periphery. Meanwhile, most of the pathological lesions were still detected in diabetic rats.ConclusionMSCs transplantation can reduce blood glucose level in recipient diabetic rats. IPCs initiate endogenous pancreatic regeneration by neogenesis of islets. IPCs are better than MSCs in regeneration of β-cells. So, IPCs therapy can be considered clinically to offer a hope for patients suffering from T1D.  相似文献   

8.
Diabetes type I is associated with bone loss and increased bone adiposity. Osteoblasts and adipocytes are both derived from mesenchymal stem cells located in the bone marrow, therefore we hypothesized that if we could block adipocyte differentiation we might prevent bone loss in diabetic mice. Control and insulin-deficient diabetic BALB/c mice were chronically treated with a peroxisomal proliferator-activated receptor gamma (PPARgamma) antagonist, bisphenol-A-diglycidyl ether (BADGE), to block adipocyte differentiation. Effects on bone density, adiposity, and gene expression were measured. BADGE treatment did not prevent diabetes-associated hyperglycemia or weight loss, but did prevent diabetes-induced hyperlipidemia and effectively blocked diabetes type I-induced bone adiposity. Despite this, BADGE treatment did not prevent diabetes type I suppression of osteoblast markers (runx2 and osteocalcin) and bone loss (as determined by micro-computed tomography). BADGE did not suppress osteoblast gene expression or bone mineral density in control mice, however, chronic (but not acute) BADGE treatment did suppress osteocalcin expression in osteoblasts in vitro. Taken together, our findings suggest that BADGE treatment is an effective approach to reduce serum triglyceride and free fatty acid levels as well as bone adiposity associated with type I diabetes. The inability of BADGE treatment to prevent bone loss in diabetic mice suggests that marrow adiposity is not linked to bone density status in type I diabetes, but we cannot exclude the possibility of additional BADGE effects on osteoblasts or other bone cells, which could contribute to preventing the rescue of the bone phenotype.  相似文献   

9.
To examine if a single or multiple oral administration of metformin, a member of the biguanide class of anti-diabetic agents, has any genotoxic and cytotoxic potential in normal and diabetic rats, a mammalian model, cytogenetic assays through several endpoints such as induction of micronuclei, chromosome aberrations, mitotic activity of bone marrow cells, sperm-head anomaly and assays of some oxidative stress markers have been conducted by the use of standard techniques. Diabetes was induced by streptozotocin injection. Metformin was administrated to both diabetic and non-diabetic rats in single doses of 100, 500 or 2500 mg/kg along with vehicle control groups for diabetic and non-diabetic rats. The animals were killed by cervical dislocation at 24 h after treatment, and then bone marrow cells were sampled. Also, a multiple dose study has done in which diabetic and non-diabetic animals were treated with 100 or 500 mg/kg of metformin daily for 4 or 8 weeks after which the animals were killed by cervical dislocation, and then bone marrow and sperm cells were collected. Concurrent control groups were also included in each experiment. The obtained results revealed that metformin was neither genotoxic nor cytotoxic for the rats in all groups at all tested doses. Moreover, metformin significantly reduced the diabetes-induced genomic instability and cell proliferation changes in somatic and germinal cells in a dose-dependent manner (2500, 500, >100 mg/kg). In addition, diabetes induced marked biochemical alterations characteristic of oxidative stress including, enhanced lipid peroxidation and reduction in the reduced glutathione level. Treatment with metformin ameliorated these biochemical markers. In conclusion, metformin is a non-genotoxic or cytotoxic compound and may protect from genomic instability induced by hyperglycemia. Apart from its well-known anti-diabetic effect, the antigenotoxic effect of metformin could be possibly ascribed to its radical scavenger effect that modulated the genomic instability responses and cell proliferation changes induced by hyperglycemia.  相似文献   

10.
Clinical research has confirmed the efficacy of several plant extracts in the modulation of oxidative stress associated with hyperlipidemia and hyperglycemia induced by obesity and diabetes. Findings indicate that obtusifolin has antioxidant properties. The aim of this study was to evaluate the possible protective effects of obtusifolin against oxidative damage in diabetic hyperlipidemia and hyperglycemia. In this study, the rats were divided into the following groups with eight animals in each: control, untreated diabetic, three obtusifolin (10, 30, and 90 mg/kg/day)-treated diabetic groups. Diabetes was induced by streptozotocin (STZ) in rats. STZ was injected intraperitoneally at a single dose of 60 mg/kg for diabetes induction. Obtusifolin (intraperitoneal injection) was administered 3 days after STZ administration; these injections were continued to the end of the study (4 weeks). At the end of the 4-week period, blood was drawn for biochemical assays. In order to determine the changes of cellular antioxidant defense systems, antioxidant enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) activities were measured in serum. Moreover, we also measured serum nitric oxide (NO) and serum malondialdehyde (MDA) levels, markers of lipid peroxidation. STZ-induced diabetes caused an elevation (P < 0.001) of blood glucose, MDA, NO, total lipids, triglycerides and cholesterol, with reduction of GSH level and CAT and SOD activities. The results indicated that the significant elevation in the blood glucose, MDA, NO, total lipids, triglycerides and cholesterol; also the reduction of glutathione level and CAT and SOD activity were ameliorated in the obtusifolin-treated diabetic groups compared with the untreated groups, in a dose-dependent manner (P < 0.05, P < 0.01, P < 0.001). These results suggest that obtusifolin has antioxidant properties and improves chemically induced diabetes and its complications by modulation of oxidative stress.  相似文献   

11.
This study aimed to evaluate the effect of a polysaccharide named levan, which was produced by new isolated bacteria, on oxidative stress and hyperglycemia in alloxan-induced diabetic rats. Levan polysaccharide was given in drinking water for 60 days at a daily dose equivalent to 2%. The oral administration of levan in diabetic rats caused a decrease in glucose level in plasma and an increase of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities in both pancreas and liver. Furthermore, a protective action against hepatic and pancreatic toxicity in diabetic rats was clearly observed. Furthermore, a significant decrease in hepatic and pancreatic indices toxicity was observed, i.e., alkalines phosphatases (ALP), aspartate and lactate transaminases (AST and ALT), lactate deshydrogenases (LDH) activities and the thiobarbituric acid-reactive substances (TBARs). These beneficial effects of levan were confirmed by histological findings in hepatic and pancreatic tissues of diabetic rats. This study demonstrates for the first time that levan is efficient in inhibiting hyperglycemia and oxidative stress induced by diabetes and suggests that administration of levan may be helpful in the prevention of diabetic complications associated with oxidative stress.  相似文献   

12.
Méndez JD  Balderas F 《Biochimie》2001,83(5):453-458
The effect of L-arginine on the pattern of lipids and lipoproteins in normal and diabetic rats was studied. Three groups of 48 rats were studied during 12 days and compared with a control group (Group I, n = 5). Group I consisted of normal rats not treated with L-arginine. Group II. Normal rats treated with 10 mM L-arginine (i.p.). Group III. Diabetic rats (alloxan 120 mg/kg, i.p.) not treated (diabetic control). Group IV. Diabetic rats treated with 10 mM L-arginine (i.p.). The rats of each group were divided in subgroups of four each. Rats were anesthetized and blood was taken from aorta to determine glucose, triglycerides, cholesterol, total lipids, and low (LDL) and high density lipoproteins (HDL) and their corresponding apoproteins (Apo A-I and Apo B-100). We observed that the alloxan concentration used in this study reproduces the clinical manifestations of disease including hyperglycemia (from 132.5 +/- 7.6 to 544.3 +/- 16.9 mg/dL) in 96 h. As a consequence the levels of triglycerides, cholesterol, total lipids, and LDL and its apoprotein Apo B-100 were increased, whereas HDL and its apoprotein Apo A-I were diminished. The L-arginine injection tends to normalize the glycemia from 24 h; similarly, hyperlipidemia (triglycerides from 924.7 +/- 220.1 to 68.5 +/- 8.4 mg/dL, cholesterol from 107.7 +/- 0.6 to 64.5 +/- 4.2 mg/dL, LDL from 24.2 +/- 2.5 to 8.0 +/- 2.9 mg/dL) was also diminished. These results suggest that the beneficial effect of L-arginine administration on serum glucose values and lipid levels in diabetic rats can be mediated by polyamine formation, although the effect of L-arginine on insulin release as observed by other authors is not discarded.  相似文献   

13.
Melatonin, a pleiotropic hormone, has many regulatory effects on the circadian and seasonal rhythms, sleep and body immune system. It is used in the treatment of blind circadian rhythm sleep disorders, delayed sleep phase and insomnia. It is a potent antioxidant, anti-inflammatory, free radical scavenger, helpful in fighting infectious disease and cancer treatment. Decreased level of circulating melatonin was associated with an increased blood glucose level, losing the anti-oxidant protection and anti-inflammatory responses. We aimed to evaluate the effect of melatonin administration, in streptozotocin (STZ) induced diabetic rats, on blood glucose level and pancreatic beta (β) cells. Diabetes mellitus was induced in Sprague dawley male rats by the intravenous (i.v) injection of 65 mg/kg of STZ. Diabetic rats received melatonin at a dose of 10 mg/kg daily for 8 weeks by oral routes. The results showed, after 8 weeks of melatonin administration, a reduction in: 1- fasting blood glucose (FBG) and fructosamine (FTA) levels, 2- kidney and liver function parameters, 3- levels of serum triglycerides, cholesterol and LDL-C, 4- malondialdehyde (MDA), 5- NF-κB expression in treated group, 6- pro-inflammatory cytokines (IL-1β and IL-12) and immunoglobulins (IgA, IgE and IgG). Furthermore, an elevation in insulin secretion was noticed in melatonin treated group that indicated β cells regeneration. Therefore, melatonin administration, in STZ induced diabetic rats; reduced hyperglycemia, hyperlipidemia and oxidative stress. Melatonin acted as an anti-inflammatory agent that reduced pro-inflammatory cytokines (IL-1β and IL-12) and oxidative stress biomarkers (MDA). Melatonin succeeded in protecting β cells under severe inflammatory situations, which was apparent by the regeneration of islets of Langerhans in treated diabetic rats. Moreover, these results can open a gate for diabetes management and treatment.  相似文献   

14.
This study aims to explore the effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells in vitro and the underlying mechanism. Bone marrow cell proliferation was determined by WST-8 assay using Cell Counting Kit-8 under the intervention of AGEs. In addition, the content of maldondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were also measured. The proliferation activity of mesenchymal stem cells (MSCs) was significantly inhibited when AGEs were added to culture medium, and this effect was dose-dependent and time-dependent. As the concentration of AGEs?Cbovine serum albumin increased, the content of intracellular MDA was significantly increased, but the activity of SOD in cell homogenates was significantly suppressed, which also showed a dose-dependent manner. AGEs could significantly inhibit the proliferation of MSCs in vitro by improving the oxidative stress in MSCs and breaking the homeostasis of intracellular environment.  相似文献   

15.
南瓜多糖对糖尿病大鼠血糖和血脂的影响   总被引:14,自引:0,他引:14  
目的:研究南瓜多糖对糖尿病大鼠血糖和血脂的影响。方法:Wistar大鼠腹腔注射四氧嘧啶后。将成模的糖尿病大鼠根据血糖和体重随机分为糖尿病组、消渴丸组和南瓜多糖组,同时设立正常对照组,并分别给予蒸馏水、消渴丸和南瓜多糖灌胃,每周测量体重一次,四周后测定空腹血糖、血清总胆固醇、甘油三酯、高密度脂蛋白、低密度脂蛋白和游离脂肪酸的含量。结果:糖尿病组大鼠体重下降,血糖显著升高,甘油三酯、总胆固醇、低密度脂蛋白和游离脂肪酸含量显著增加,而高密度脂蛋白含量显著降低;补充南瓜多糖和消渴丸后,体重逐渐增加,血糖显著下降,总胆固醇、甘油三酯、低密度脂蛋白和游离脂肪酸含量显著降低,高密度脂蛋白含量显著升高,并且南瓜多糖的降糖降脂效果优于消渴丸。结论:南瓜多糖能增加体重,降低糖尿病大鼠血糖、血脂,对糖尿病及其并发症有一定的作用。  相似文献   

16.
Stroke is the most common cause of motor disabilities and is a major cause of mortality worldwide. Adult stem cells have been shown to be effective against neuronal degeneration through mechanisms that include both the recovery of neurotransmitter activity and a decrease in apoptosis and oxidative stress. We chose the lineage stroke-prone spontaneously hypertensive rat (SHRSP) as a model for stem cell therapy. SHRSP rats can develop such severe hypertension that they generally suffer a stroke at approximately 1 year of age. The aim of this study was to evaluate whether mesenchymal stem cells (MSCs) decrease apoptotic death and oxidative stress in existing SHRSP brain tissue. The results of qRT-PCR assays showed higher levels of the antiapoptotic Bcl-2 gene in the MSC-treated animals, compared with untreated. Our study also showed that superoxide, apoptotic cells, and by-products of lipid peroxidation decreased in MSC-treated SHRSP to levels similar those found in the animal controls, Wistar Kyoto rats. In addition, we saw a repair of morphological damage at the hippocampal region after MSC transplantation. These data suggest that MSCs have neuroprotective and antioxidant potential in stroke-prone spontaneously hypertensive rats.  相似文献   

17.
Cell therapy is thought to be a possible approach for treatment of diabetes. Cells with the ability to differentiate into insulin-producing cells (IPCs) would provide an unlimited source of islet cells for transplantation. In this study, the differentiation capacity of rat bone-marrow-derived mesenchymal stem cells (MSCs) to IPCs and the feasibility of using them for reversal of hyperglycemia were investigated. In vitro studies indicated that treatment of cells with high glucose concentration, nicotinamide and β-mercaptoethanol resulted to differentiated cells, which had characteristics of IPCs including spherical, grape-like morphology, secretion of insulin, and being positive for dithizone. To test the in vivo function of differentiated MSCs, they were injected into the spleen of diabetic rats. It was shown that diabetic rats who received IPCs, significantly reduced the glucose level, in response to intraperitoneal glucose tolerance (IPGT) test. These results indicate that MSCs are capable of in vitro differentiation into functional IPCs, which can reverse hyperglycemia in rat model of diabetes.  相似文献   

18.
This study aims to examine the effects of polysaccharide levan on oxidative stress and hyperglycemia in alloxan-induced diabetic rats. Levan, used in this study, was a microbial levan synthetisized by a non pathogenic bacteria recently isolated and identified as Bacillus licheniformis. Animals were allocated into four groups of six rats each: a control group (Control), diabetic group (Diab.), normal rats received levan (L) and diabetic rats fed with levan (DL). Treated diabetic rats were administrated with levan in drinking water through oral gavage for 60 days. The administration of polysaccharide levan in diabetic rats caused a significant increase in glycogen level by 52% and a decrease in glucose level in plasma by 52%. Similarly, the administration of polysaccharide levan in diabetic rats caused a decrease in the thiobarbituric acid-reactive substances (TBARS) by 31%, 41%, 39% and 25%, an increase in superoxide dismutase (SOD) by 40%, 50%, 44% and 34%, and in catalase (CAT) by 18%, 20%, 12% and 18% in liver, kidney, pancreas and heart, respectively. Furthermore, a significant decrease in hepatic and renal indices toxicity was observed, i.e. alkalines phosphatases (ALP), aspartate and lactate transaminases (AST and ALT) activities, total bilirubin, creatinine and urea levels by 19%, 31%, 32%, 36%, 37% and 23%, respectively. The results show that administration of polysaccharide levan can restore abnormal oxidative indice near normal levels. This study demonstrates, for the first time, that polysaccharide levan is efficient in inhibiting hyperglycemia and oxidative stress induced by diabetes and suggests that levan supplemented to diet may be helpful in preventing diabetic complications in adult rats.  相似文献   

19.
Hyperglycemia-induced oxidative stress plays a vital role in the progression of diabetic nephropathy. The renoprotective nature of taurine has also been reported earlier; but little is known about the mechanism of this beneficial action. The present study has, therefore, been carried out to explore in detail the mechanism of the renoprotective effect of taurine under diabetic conditions. Diabetes was induced in rats by alloxan (single i.p. dose of 120?mg/kg body weight) administration. Taurine was administered orally for 3?weeks (1% w/v in drinking water) either from the day on which alloxan was injected or after the onset of diabetes. Alloxan-induced diabetic rats showed a significant increase in plasma glucose, enhanced the levels of renal damage markers, plasma creatinine, urea nitrogen and urinary albumin. Diabetic renal injury was associated with increased kidney weight to body weight ratio and glomerular hypertrophy. Moreover, it increased the productions of reactive oxygen species, enhanced lipid peroxidation and protein carbonylation in association with decreased intracellular antioxidant defense in the kidney tissue. In addition, hyperglycemia enhanced the levels of proinflammatory cytokins (TNF-α, IL-6, IL-1β) and Na+–K+-ATPase activity with a concomitant reduction in NO content and eNOS expression in diabetic kidney. Investigation of the oxidative stress-responsive signaling cascades showed the upregulation of PKCα, PKCβ, PKCε and MAPkinases in the renal tissue of the diabetic animals. However, taurine administration decreased the elevated blood glucose and proinflammatory cytokine levels, reduced renal oxidative stress (via decrease in xanthine oxidase activity, AGEs formation and inhibition of p47phox/CYP2E1 pathways), improved renal function and protected renal tissue from alloxan-induced apoptosis via the regulation of Bcl-2 family and caspase-9/3 proteins. Taurine supplementation in regular diet could, therefore, be beneficial to regulate diabetes-associated renal complications.  相似文献   

20.
Reversal of experimental diabetes by multiple bone marrow transplantation   总被引:5,自引:0,他引:5  
Therapeutic utility of bone marrow transplantation in diabetic patients to overcome deficient beta-cell population is an attractive proposal. However, the status of bone marrow stem cells (BMSCs) under hyperglycemia is not known. In the present study, we investigated the status of BMSCs in experimental-diabetic mice and demonstrated the rescue of experimental diabetes by multiple diabetic bone marrow transplantation. Our flow-cytometry analysis for CD34+, CD45+, flk1+, c-kit+, and CD34+CD45+ revealed that BMSC reserve remains unaffected under sustained hyperglycemia. We found that single injection of diabetic bone marrow cells (approximately 10(6)) resulted in reduction and stabilization of moderate hyperglycemia. However, multiple injections at regular intervals led to restoration of stabilized normoglycemia during a 30 day follow-up. Reversal of diabetes was evidenced by disappearance of hyperglycemia, normal intra-peritoneal glucose tolerance test, and histology and morphometry of pancreas. The present study thus demonstrates that diabetic bone marrow retains its stemness and potential to induce pancreatic regeneration on transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号