首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Plant cell walls undergo dynamic structural and chemical changes during plant development and growth. Floral organ abscission and lateral root emergence are both accompanied by cell‐wall remodeling, which involves the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)‐derived peptide and its receptors, HAESA (HAE) and HAESA‐LIKE2 (HSL2). Plant cell walls also act as barriers against pathogenic invaders. Thus, the cell‐wall remodeling during plant development could have an influence on plant resistance to phytopathogens. Here, we identified IDA‐like 6 (IDL6), a gene that is prominently expressed in Arabidopsis leaves. IDL6 expression in Arabidopsis leaves is significantly upregulated when the plant is suffering from attacks of the bacterial Pseudomonas syringae pv. tomato (Pst) DC3000. IDL6 overexpression and knockdown lines respectively decrease and increase the Arabidopsis resistance to Pst DC3000, indicating that the gene promotes the Arabidopsis susceptibility to Pst DC3000. Moreover, IDL6 promotes the expression of a polygalacturonase (PG) gene, ADPG2, and increases PG activity in Arabidopsis leaves, which in turn reduces leaf pectin content and leaf robustness. ADPG2 overexpression restrains Arabidopsis resistance to Pst DC3000, whereas ADPG2 loss‐of‐function mutants increase the resistance to the bacterium. Pst DC3000 infection elevates the ADPG2 expression partially through HAE and HSL2. Taken together, our results suggest that IDL6‐HAE/HSL2 facilitates the ingress of Pst DC3000 by promoting pectin degradation in Arabidopsis leaves, and Pst DC3000 might enhance its infection by manipulating the IDL6‐HAE/HSL2‐ADPG2 signaling pathway.  相似文献   

2.
应用荧光显微技术、激光共聚焦扫描显微技术、单克隆抗体免疫荧光标记技术以及傅里叶变换显微红外光谱分析(FTIR)等手段,研究了内钙拮抗剂TMB-8对白皮松花粉管胞内Ca2+分布、花粉管生长以及细胞肇构建等的影响.结果表明,白皮松花粉管经TMB-8处理后,胞内的Ca2+浓度下降,花粉管内典型的Ca2+浓度梯度消失,花粉萌发...  相似文献   

3.
Hydroxyproline O‐arabinosyltransferases (HPATs) are members of a small, deeply conserved family of plant‐specific glycosyltransferases that add arabinose sugars to diverse proteins including cell wall‐associated extensins and small signaling peptides. Recent genetic studies in flowering plants suggest that different HPAT homologs have been co‐opted to function in diverse species‐specific developmental contexts. However, nothing is known about the roles of HPATs in basal plants. We show that complete loss of HPAT function in Arabidopsis thaliana and the moss Physcomitrella patens results in a shared defect in gametophytic tip cell growth. Arabidopsis hpat1/2/3 triple knockout mutants suffer from a strong male sterility defect as a consequence of pollen tubes that fail to fully elongate following pollination. Knocking out the two HPAT genes of Physcomitrella results in larger multicellular filamentous networks due to increased elongation of protonemal tip cells. Physcomitrella hpat mutants lack cell‐wall associated hydroxyproline arabinosides and can be rescued with exogenous cellulose, while global expression profiling shows that cell wall‐associated genes are severely misexpressed, implicating a defect in cell wall formation during tip growth. Our findings point to a major role for HPATs in influencing cell elongation during tip growth in plants.  相似文献   

4.
5.
Reactive oxygen species (ROS) produced by NAD(P)H oxidases play a central role in plant stress responses and development. To better understand the function of NAD(P)H oxidases in plant development, we characterized the Arabidopsis thaliana NAD(P)H oxidases RBOHH and RBOHJ. Both proteins were specifically expressed in pollen and dynamically targeted to distinct and overlapping plasma membrane domains at the pollen tube tip. Functional loss of RBOHH and RBOHJ in homozygous double mutants resulted in reduced fertility. Analyses of pollen tube growth revealed remarkable differences in growth dynamics between Col–0 and rbohh–1 rbohj–2 pollen tubes. Growth rate oscillations of rbohh–1 rbohj–2 pollen tubes showed strong fluctuations in amplitude and frequency, ultimately leading to pollen tube collapse. Prior to disintegration, rbohh–1 rbohj–2 pollen tubes exhibit high‐frequency growth oscillations, with significantly elevated growth rates, suggesting that an increase in the rate of cell‐wall exocytosis precedes pollen tube collapse. Time‐lapse imaging of exocytic dynamics revealed that NAD(P)H oxidases slow down pollen tube growth to coordinate the rate of cell expansion with the rate of exocytosis, thereby dampening the amplitude of intrinsic growth oscillations. Using the Ca2+ reporter Yellow Cameleon 3.6, we demonstrate that high‐amplitude growth rate oscillations in rbohh–1 rbohj–2 pollen tubes are correlated with growth‐dependent Ca2+ bursts. Electrophysiological experiments involving double mutant pollen tubes and pharmacological treatments also showed that ROS influence K+ homeostasis. Our results indicate that, by limiting pollen tube growth, ROS produced by NAD(P)H oxidases modulate the amplitude and frequency of pollen tube growth rate oscillations.  相似文献   

6.
  • Boron (B) is essential for normal plant growth, including pollen tube growth. B deficiency influences various physiological and metabolic processes in plants. However, the underlying mechanism of B deficiency in pollen tube growth is not sufficiently understood. In the present research, the influence of B deficiency on apple (Malus domestica) pollen tube growth was studied and the possible regulatory mechanism evaluated.
  • Apple pollen grains were cultured under different concentrations of B. Scanning ion‐selective electrode technique, fluorescence labelling and Fourier‐transform infrared (FTIR) analysis were used to detect calcium ion flux, cytosolic Ca2+ concentration ([Ca2+]cyt), actin filaments and cell wall components of pollen tubes.
  • B deficiency inhibited apple pollen germination and induced retardation of tube growth. B deficiency increased extracellular Ca2+ influx and thus led to increased [Ca2+]cyt in the pollen tube tip. In addition, B deficiency modified actin filament arrangement at the pollen tube apex. B deficiency also altered the deposition of pollen tube wall components. Clear differences were not observed in the distribution patterns of cellulose and callose between control and B deficiency treated pollen tubes. However, B deficiency affected distribution patterns of pectin and arabinogalactan proteins (AGP). Clear ring‐like signals of pectins and AGP on control pollen tubes varied according to B deficiency. B deficiency further decreased acid pectins, esterified pectins and AGP content at the tip of the pollen tube, which were supported by changes in chemical composition of the tube walls.
  • B appears to have an active role in pollen tube growth by affecting [Ca2+]cyt, actin filament assembly and pectin and AGP deposition in the pollen tube. These findings provide valuable information that enhances our current understanding of the mechanism regulating pollen tube growth.
  相似文献   

7.
Summary The wall ofPinus sylvestris pollen and pollen tubes was studied by electron microscopy after both rapid-freeze fixation and freeze-substitution (RF-FS) and chemical fixation. Fluorescent probes and antibodies (JIM7 and JIM5) were used to study the distribution of esterified pectin, acidic pectin and callose. The wall texture was studied on shadow-casted whole mounts of pollen tubes after extraction of the wall matrix. The results were compared to current data of angiosperms. TheP. sylvestris pollen wall consists of a sculptured and a nonsculptured exine. The intine consists of a striated outer layer, that stretches partly over the pollen tube wall at the germination side, and a striated inner layer, which is continuous with the pollen tube wall and is likely to be partly deposited after germination. Variable amounts of callose are present in the entire intine. No esterified pectin is detected in the intine and acidic pectin is present in the outer intine layer only. The wall of the antheridial cell contains callose, but no pectin is detectable. The wall between antheridial and tube cell contains numerous plasmodesmata and is bordered by coated pits, indicating intensive communication with the tube cell. Callose and esterified pectin are present in the tip and the younger parts of the pollen tubes, but both ultimately disappear from the tube. Sometimes traces in the form of bands remain present. No acidic pectin is detected in either tip or tube. The wall of the pollen tube tip has a homogenous appearance, but gradually attains a fibrillar character at aging, perhaps because of the disappearance of callose and pectin. No secondary wall formation or callose lining can be seen wilh the electron microscope. The densily of the cellulose microfibrils (CMF) is much lower in the tip than in the tube. Both show CMF in all but axial and nontransverse orientations. In conclusion,P. sylvestris and angiosperm pollen tubes share the presence of esterified pectin in the tip, the oblique orientations of the CMF, and the gradual differentiation of the pollen tube wall, indicating a possible relation to tip growth. The presence of acidic pectin and the deposition of a secondary-wall or callose layer in angiosperms but not inP. sylvestris indicales that these characteristics are not related to tip growth, but probably represent adaptations to the fast and intrastylar growth of angiosperms.Abbreviations CMF cellulose microfibrils - II inner intine - NE nonsculptured exine - OI outer intine - RF-FS rapid-freeze fixation freeze-substitution - SE sculptured exine - SER smooth endoplasmic reliculum - SV secretory vesicles  相似文献   

8.
Plant sexual reproduction involves the growth of tip-polarized pollen tubes through the female tissues in order to deliver the sperm nuclei to the egg cells. Despite the importance of this crucial step, little is known about the molecular mechanisms involved in this spatial and temporal control of the tube growth. In order to study this process and to characterize the structural composition of the extracellular matrix of the male gametophyte, immunocytochemical and biochemical analyses of Arabidopsis pollen tube wall have been carried out. Results showed a well-defined localization of cell wall epitopes with highly esterified homogalacturonan and arabinogalactan-protein mainly in the tip region, weakly methylesterified homogalacturonan back from the tip and xyloglucan and (1→5)-α-L-arabinan all along the tube. Here, we present complementary data regarding (1) the ultrastructure of the pollen tube cell wall and (2) the immunolocalization of homogalacturonan and arabinan epitopes in 16-h-old pollen tubes and in the stigma and the transmitting tract of the female organ. Discussion regarding the pattern of the distribution of the cell wall epitopes and the possible mechanisms of cell adhesion between the pollen tubes and the female tissues is provided.Key words: arabinan, cell adhesion, cell wall, homogalacturonan, pistil, pollen tube growth, transmitting tractFertilization of flowering plants requires the delivery of the two sperm cells, carried by the fast growing tip-polarized pollen tube, to the egg cell. At every stage of the pollen tube development within the stigma, style and ovary, pollen tubes are guided to the ovules via multiple signals that need to pass through the cell wall of the pollen tube to reach their targets.16The analysis of Arabidopsis pollen tube cell wall has recently been reported.7 Results showed a well-defined localization of cell wall epitopes with highly methylesterified homogalacturonan (HG) and arabinogalactan-protein (AGP) mainly in the tip region, weakly methylesterified HG back from the tip and xyloglucan and arabinan all along the tube. In addition, according to the one letter nomenclature of xyloglucan,8 the main motif of Arabidopsis pollen tube xyloglucan was XXFG harboring one O-acetyl group. In order to bring new information regarding the possible interaction between the pollen tubes and the female tissues, the ultrastructural organization of the pollen tube cell wall, the cytological staining and immunolocalization of the cell wall epitopes of the pistil and especially the transmitting tract (TT), a specialized tissue where pollen tubes grow, were carried out.  相似文献   

9.
Cellulose is an important component of cell wall, yet its location and function in pollen tubes remain speculative. In this paper, we studied the role of cellulose synthesis in pollen tube elongation in Pinus bungeana Zucc. by using the specific inhibitor, 2, 6-dichlorobenzonitrile (DCB). In the presence of DCB, the growth rate and morphology of pollen tubes were distinctly changed. The organization of cytoskeleton and vesicle trafficking were also disturbed. Ultrastructure of pollen tubes treated with DCB was characterized by the loose tube wall and damaged organelles. DCB treatment induced distinct changes in tube wall components. Fluorescence labeling results showed that callose, and acidic pectin accumulated in the tip regions, whereas there was less cellulose when treated with DCB. These results were confirmed by FTIR microspectroscopic analysis. In summary, our findings showed that inhibition of cellulose synthesis by DCB affected the organization of cytoskeleton and vesicle trafficking in pollen tubes, and induced changes in the tube wall chemical composition in a dose-dependent manner. These results confirm that cellulose is involved in the establishment of growth direction of pollen tubes, and plays important role in the cell wall construction during pollen tube development despite its lower quantity.  相似文献   

10.
Monoclonal antibodies that recognize pectins were used for the localization of esterified (JIM7) and acidic, unesterified (JIM5) forms of pectin in pollen tube walls of Ornithogalum virens L. (x = n = 3). The results indicated that the distribution of the two forms of pectin in the pollen tube wall depended on the medium (liquid or solid) used for pollen germination. In pollen tubes grown in the liquid medium, the localization of JIM7 was limited to the very tip of the pollen tube, whereas the localization of JIM5 indicated a uniform distribution of unesterified pectins in the very tip of the tube and along the subapical parts of the tube wall. In tubes germinated on the medium stabilized with agar (1–2%) the localization of JIM7 and JIM5 indicated the presence of both forms of pectin in the tube tip and along the whole length of the pollen tube wall in a ring-like pattern. Thus, the localization of esterified pectins in the sub-apical part of the pollen tube wall, below the apex of the tube, is described for the first time. Measurements of the growth rates of pollen tubes growing on the two types of medium indicated that oscillations in tube growth rate occur but these do not coincide with the pattern of pectin distribution in the tube wall. Our results complement the previous data obtained for the localization of JIM5 and JIM7 in pollen tube walls of other plant species. (Y.-Q. Li et al. 1994, Sex Plant Reprod 7: 145–150) and provide new insight into an understanding of the construction of the pollen tube wall and the physiology of pollen grain germination. Received: 25 January 1999 / Accepted: 23 June 1999  相似文献   

11.
Long‐chain base phosphates (LCBPs) have been correlated with amounts of crucial biological processes ranging from cell proliferation to apoptosis in animals. However, their functions in plants remain largely unknown. Here, we report that LCBPs, sphingosine‐1‐phosphate (S1P) and phytosphingosine‐1‐phosphate (Phyto‐S1P), modulate pollen tube growth in a concentration‐dependent bi‐phasic manner. The pollen tube growth in the stylar transmitting tissue was promoted by SPHK1 overexpression (SPHK1‐OE) but dampened by SPHK1 knockdown (SPHK1‐KD) compared with wild‐type of Arabidopsis; however, there was no detectable effect on in vitro pollen tube growth caused by misexpression of SPHK1. Interestingly, exogenous S1P or Phyto‐S1P applications could increase the pollen tube growth rate in SPHK1‐OE, SPHK1‐KD and wild‐type of Arabidopsis. Calcium ion (Ca2+)‐imaging analysis showed that S1P triggered a remarkable increase in cytosolic Ca2+ concentration in pollen. Extracellular S1P induced hyperpolarization‐activated Ca2+ currents in the pollen plasma membrane, and the Ca2+ current activation was mediated by heterotrimeric G proteins. Moreover, the S1P‐induced increase of cytosolic free Ca2+ inhibited the influx of potassium ions in pollen tubes. Our findings suggest that LCBPs functions in a signaling cascade that facilitates Ca2+ influx and modulates pollen tube growth.  相似文献   

12.
In tip‐confined growing pollen tubes, delivery of newly synthesized cell wall materials to the rapidly expanding apical surface requires spatial organization and temporal regulation of the apical F‐actin filament and exocytosis. In this study, we demonstrate that apical F‐actin is essential for the rigidity and construction of the pollen tube cell wall by regulating exocytosis of Nicotiana tabacum pectin methylesterase (NtPPME1). Wortmannin disrupts the spatial organization of apical F‐actin in the pollen tube tip and inhibits polar targeting of NtPPME1, which subsequently alters the rigidity and pectic composition of the pollen tube cell wall, finally causing growth arrest of the pollen tube. In addition to mechanistically linking cell wall construction and apical F‐actin, wortmannin can be used as a useful tool for studying endomembrane trafficking and cytoskeletal organization in pollen tubes.  相似文献   

13.
Lead is a widespread pollutant and has been reported to inhibit pollen tube development, but the mechanism of toxicity involved remains unclear. Here, we report that lead stress significantly prevented Picea wilsonii pollen germination and tube growth and also dramatically altered the tube morphology in a concentration-dependent manner. Fluorescence labeling with JIM 5 (anti-acidic pectin antibody) and Calcofluor white revealed the lead-induced decline of acidic pectin and cellulose, especially in the subapical region. Decolorized aniline blue staining showed the marked accumulation of callose in the apical and subapical regions of lead-treated tubes. Fluorescence labeling with Alexa Fluor 568 phalloidin and anti-tubulin antibody revealed that the distribution of the cytoskeleton in P. wilsonii pollen grains and tubes were developmentally regulated and that lead disturbed the cytoskeleton organization, especially in the shank of the pollen tubes. Taken together, our experiments revealed a link between the dynamics of cytoskeleton organization and the process of P. wilsonii pollen tube development and also indicated that lead disturbed the cytoskeleton assembly and, consequently, cell wall construction. These findings provide new insights into the mechanism of lead toxicity in the tip growth of pollen tubes.  相似文献   

14.
15.
Intracellular membrane fusion is effected by SNARE proteins that reside on adjacent membranes and form bridging trans‐SNARE complexes. Qa‐SNARE members of the Arabidopsis SYP1 family are involved in membrane fusion at the plasma membrane or during cell plate formation. Three SYP1 family members have been classified as pollen‐specific as inferred from gene expression profiling studies, and two of them, SYP124 and SYP125, are confined to angiosperms. The SYP124 gene appears genetically unstable, whereas its sister gene SYP125 shows essentially no variation among Arabidopsis accessions. The third pollen‐specific member SYP131 is sister to SYP132, which appears evolutionarily conserved in the plant lineage. Although evolutionarily diverse, the three SYP1 proteins are functionally overlapping in that only the triple mutant syp124 syp125 syp131 shows a specific and severe male gametophytic defect. While pollen development and germination appear normal, pollen tube growth is arrested during passage through the style. Our results suggest that angiosperm pollen tubes employ a combination of ancient and modern Qa‐SNARE proteins to sustain their growth‐promoting membrane dynamics during the reproductive process.  相似文献   

16.
Anja Geitmann  Yi-Qin Li  M. Cresti 《Protoplasma》1995,187(1-4):168-171
Summary The monoclonal antibody (MAb) JIM5, marking acidic pectins, was used to localize ultrastructurally pectin molecules in the pollen tube wall ofNicotiana tabacum. Longitudinal sections of LR-White embedded pollen tubes were exposed to antibody treatment; accumulations of pectins were identified by counting the density of the gold particles representing the pectin epitopes along the pollen tube wall. Significant accumulations of gold grains were marked and the distances between them were measured. In many pollen tubes a more or less regular distribution of the accumulations was observed along the tube indicating a periodical deposition of pectin. The distances between the accumulations were 4–6 m. Most of the label was found in the inner part of the outer layer of the bilayered cell wall. These findings correspond to and confirm the earlier observation by our group reporting ring-shaped periodical deposits in pollen tubes after immunofluorescence labelling with the MAb JIM5 under the confocal laser scanning microscope.Abbreviations Ab antibody - MAb monoclonal antibody  相似文献   

17.
Penetration of pollen tubes through stigmatic tissues in Brassica napus L. may involve the release of cell wall modifying enzymes from the pollen tube tip. We examined the expression of a pectin-degrading polygalacturonase (PG) enzyme in unpollinated and early and late pollinated stigmas via immunoblotting and immuno-light microscopy using a PG polyclonal antibody. Immunoblotting analysis indicated that PG enzyme was present at low levels in unpollinated stigmas and at high levels in pollinated stigmas. The level of PG did not detectably increase between early and late pollinated stigmas. Immuno-light microscopy demonstrated that PG enzyme was present in ungerminated pollen grains, stigmatic papillae and in the tip of pollen tubes growing into the papillar wall. This latter evidence suggests that PG enzyme may play an important role in papillar cell wall penetration during pollination although other interpretations of the role of pollen PG should not be discounted. Received: 9 November 2000 / Accepted: 7 December 2000  相似文献   

18.
Production and scavenging of reactive oxygen species (ROS) in somatic plant cells is developmentally regulated and plays an important role in the modification of cell wall mechanical properties. Here we show that H2O2 and the hydroxyl radical (?OH) can regulate germination of tobacco pollen by modifying the mechanical properties of the pollen intine (inner layer of the pollen wall). Pollen germination was affected by addition of exogenous H2O2, ?OH, and by antioxidants scavenging endogenous ROS: superoxide dismutase, superoxide dismutase/catalase mimic Mn‐5,10,15,20‐tetrakis(1‐methyl‐4‐pyridyl)21H, 23H‐porphin, or a spin‐trap α‐(4‐pyridyl‐1‐oxide)‐Ntert‐butylnitrone, which eliminates ?OH. The inhibiting concentrations of exogenous H2O2 and ?OH did not decrease pollen viability, but influenced the mechanical properties of the wall. The latter were estimated by studying the resistance of pollen to hypo‐osmotic shock. ?OH caused excess loosening of the intine all over the surface of the pollen grain, disrupting polar growth induction. In contrast, H2O2, as well as partial removal of endogenous ?OH, over‐tightened the wall, impeding pollen tube emergence. Feruloyl esterase (FAE) was used as a tool to examine whether H2O2‐inducible inter‐polymer cross‐linking is involved in the intine tightening. FAE treatment caused loosening of the intine and stimulated pollen germination and pollen tube growth, revealing ferulate cross‐links in the intine. Taken together, the data suggest that pollen intine properties can be regulated differentially by ROS. ?OH is involved in local loosening of the intine in the germination pore region, while H2O2 is necessary for intine strengthening in the rest of the wall through oxidative coupling of feruloyl polysaccharides.  相似文献   

19.
Plant cell wall modification is a critical component in stress responses. Endo‐1,4‐β‐glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence‐signalling network. A study of a set of Arabidopsis EG T‐DNA insertion mutants challenged with P. syringae and Botrytis cinerea revealed that the lack of other EGs interferes with infection phenotype, callose deposition, expression of signalling pathway marker genes and hormonal balance. We conclude that a lack of EGs could alter plant response to pathogens by modifying the properties of the cell wall and/or interfering with signalling pathways, contributing to generate the appropriate signalling outcomes. Analysis of microarray data demonstrates that EGs are differentially expressed upon many different plant–pathogen challenges, hormone treatments and many abiotic stresses. We found some Arabidopsis EG mutants with increased tolerance to osmotic and salt stress. Our results show that impairing EGs can alter plant–pathogen interactions and may contribute to appropriate signalling outcomes in many different biotic and abiotic plant stress responses.  相似文献   

20.
In eukaryotes, homotypic fusion and vacuolar protein sorting (HOPS) as well as class C core vacuole/endosome tethering (CORVET) are evolutionarily conserved membrane tethering complexes that play important roles in lysosomal/vacuolar trafficking. Whether HOPS and CORVET control endomembrane trafficking in pollen tubes, the fastest growing plant cells, remains largely elusive. In this study, we demonstrate that the four core components shared by the two complexes, Vacuole protein sorting 11 (VPS11), VPS16, VPS33, and VPS18, are all essential for pollen tube growth in Arabidopsis thaliana and thus for plant reproduction success. We used VPS18 as a representative core component of the complexes to show that the protein is localized to both multivesicular bodies (MVBs) and the tonoplast in a growing pollen tube. Mutant vps18 pollen tubes grew more slowly in vivo, resulting in a significant reduction in male transmission efficiency. Additional studies revealed that membrane fusion from MVBs to vacuoles is severely compromised in vps18 pollen tubes, corroborating the function of VPS18 in late endocytic trafficking. Furthermore, vps18 pollen tubes produce excessive exocytic vesicles at the apical zone and excessive amounts of pectin and pectin methylesterases in the cell wall. In conclusion, this study establishes an additional conserved role of HOPS/CORVET in homotypic membrane fusion during vacuole biogenesis in pollen tubes and reveals a feedback regulation of HOPS/CORVET in the secretion of cell wall modification enzymes of rapidly growing plant cells.

Arabidopsis VPS18 plays an important role in regulating pollen tube growth through mediating the late endocytic trafficking and secretion of pectin and associated enzymes to the cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号