首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
β肾上腺素受体的结构与功能域   总被引:1,自引:0,他引:1  
β肾上腺素受体具有视紫红质样结构,包括由膜两侧亲水环相互联结7个疏水性跨膜α螺旋结构,N端无信号序列而含有2个N-糖基化位点,C端富含丝氨酸和苏氨酸残基.7个跨膜结构构成配基结合位点.β受体细胞膜内侧环状序列形成两亲α螺旋结构,与G蛋白相互作用.C端及第3个内侧环的丝氨酸及苏氨酸残基构成受体磷酸化位点,参与受体功能调控.  相似文献   

2.
随着受体的研究的蓬勃发展,对在心脏活动调节中起重要作用的肾上腺素受体的了解也更加深入。近年来的许多研究表明β2-肾上腺素受体不同亚型之间的信号转导及其介质的心脏反应有着很大的差异。本文扼要介绍了心脏β2-肾上腺素受体的最新研究进展,主要包括β2-肾上腺素受体中的混杂G蛋白偶联、信号转导局域化、固有活性及其与充血性心力衰竭的关系。  相似文献   

3.
雌激素是女性体内主要的类固醇性激素.对于心肌缺血性伤害,切除卵巢的成年雌性大鼠在β-肾上腺素受体激动时,比正常雌性大鼠呈现更严重的心肌损伤;而去卵巢后的雌激素替补组大鼠对β-肾上腺素受体激动时心肌缺血性伤害的反应则又回复到正常雌性大鼠水平,这为雌激素对抗缺血性伤害的心脏保护作用提供了证据.雌激素的这种保护作用是通过下调β1-肾上腺素受体的表达来实现的.也有研究证明,雌激素能抑制蛋白激酶A(protein kinase A,PKA)的表达和活性,PKA是Gs蛋白/腺苷酸环化酶(adenylyl cyclase,AC)/cAMP/PKA通路的第二信使,而该通路最终影响心肌的收缩功能.有初步证据表明雌激素还能抑制β1-肾上腺素受体通路下游的另一种第二信使钙调蛋白激酶Ⅱ-δc(Ca2+/calmodulin kinase Ⅱ-δc,CaMKⅡ-δc)的活性,而CaMKⅡ-δc参与PKA非依赖性的细胞凋亡.即时给予生理浓度雌激素可不通过雌激素受体而直接抑制心肌β1-肾上腺素受体并减弱Ca2+内流.此外,脑研究也显示雌激素能抑制负责调节动脉血压脑区的β广肾上腺素受体活性.因此,雌激素和β1-肾上腺素受体之间的相互作用及其信号通路十分复杂.雌激素不仅主导性别决定,在机体其它功能例如心脏保护方面也具有重要作用.  相似文献   

4.
金黄色葡萄球菌肠毒素C2 (Staphylococcal enterotoxin C2,SEC2)作为一种超级抗原蛋白,极微量即可有效激活机体免疫系统,这一特性可应用于对肿瘤和感染性疾病的辅助治疗.为了增强SEC2的超抗原活性,应用over-lap PCR方法将SEC2中的102~106位GKVTG氨基酸残基分别突变为WWH、WWT和WWP,获得3种突变体ST-1、ST-2和ST-3.三种突变体刺激小鼠淋巴细胞增殖活性和肿瘤细胞生长抑制活性与野生型SEC2相比均有显著提高.ST-1和ST-3的致热活性与野生型SEC2相当,而ST-2的致热活性明显高于野生型SEC2.此外,三种突变体体外刺激淋巴细胞分泌IL-2、IFN-γ和TNF-α的水平也显著提高,这可能是导致突变体具有较高肿瘤细胞生长抑制活性的原因.进一步实验发现,三种突变体刺激下,小鼠脾淋巴细胞mVβ8.2基因的转录水平较野生型SEC2显著增加,暗示突变体对TCR mVβ8.2分子亲和力的提高,可能是其超抗原活性增强的主要原因.  相似文献   

5.
研究了GDNF结构与功能的关系 .基于鼠源GDNF的晶体结构 ,利用计算机SGIIndigo2(R4 4 0 0 )工作站和InsightⅡ (95.5)蛋白质分析软件模拟了人GDNF三维结构 ,设计了GDNF分子的两个缺失突变体ΔN1 2 8和ΔN78 90 .以野生型GDNFcDNA作为模板 ,用PCR法得到编码缺失突变体的DNA片段 .将大肠杆菌作为表达系统 ,使缺失突变体GDNF在大肠杆菌中表达 ,对表达产物纯化和复性后进行生物活性测定 .两株突变体在大肠肝菌中获得了高效表达 ,纯化后的GDNF突变体ΔN1 2 8可以与存在于KG 1a细胞表面的受体结合 ,但不能促进 8日龄鸡胚背根节突起的生长 .突变体ΔN78 90既不能与受体结合 ,同时也失去了促背根节突起生长的功能 .说明GDNF分子的N端氨基酸对分子的生物学活性很重要 ,但对分子与受体GDNFR α的结合并不是必需的 ,而分子中的螺旋区对分子与受体的结合以及生物学活性都必不可少 .  相似文献   

6.
免疫调节因子白细胞介素-2(IL-2)具有中枢镇痛功能。实验采用基因定位突变技术,获得系列IL-2突变体,并测定其免疫学活性和镇痛能力,发现无免疫学活性的IL-2突变体20Leu-IL-2仍具有中枢镇痛能力,而44Leu-IL-2,45 Val-IL-2虽保留了免疫学活性,但其镇痛能力显著性下降或消失,阿片受体拮抗剂纳洛酮能够阻断IL-2的中枢镇痛作用,而不能影响IL-2对CTLL-2细胞的增殖作用。抗内源性阿片肽血清与IL-2能发生明显的交叉反应。实验结果提示,IL-2分子是通过由第45位Tyr残基及空间上相近的Phe残基等组成的镇痛功能位点与阿片受体相结合而发挥镇痛效应。  相似文献   

7.
为深入研究肌钙蛋白I2(TNNI2)作为核受体相互作用蛋白参与核受体基因表达调控的分子机制,采用缺失突变联合酵母双杂交技术证明了TNNI2与ERRα1的相互作用位于TNNI2的1~128位氨基酸残基区域.该区域包括TNNI2蛋白的N末端、抑制肽段(96~116位氨基酸残基)和一个核受体结合位点LXXLL模序(即NR盒).哺乳细胞瞬时共转染实验证实,TNNI21-128缺失突变体不具备辅助活化功能,并能作为负显性突变体完全抑制野生型TNNI2的辅活化作用.研究充分证明TNNI2与核受体的相互作用定位于TNNI2蛋白1~128氨基酸残基,并从侧面进一步证实了TNNI2能辅助核受体反式激活作用的功能.  相似文献   

8.
陈磊  陈晟  吴敬  吴丹 《生物工程学报》2018,34(2):255-263
运用体外分子进化技术易错PCR方法,高通量筛选热稳定性提高的弯曲芽孢杆菌Bacillus flexus CCTCC2015368β-淀粉酶突变体。利用LB琼脂淀粉板显色、96-孔板DNS法测酶活和酶标仪检测等,最终筛选到了一株热稳定性显著提高的突变体D476N。野生型和突变体D476N分别纯化后,酶学性质测定表明:突变体D476N的最适pH为6.5,与野生型相比降低了0.5。突变体D476N和野生型的最适温度均为55℃,突变体D476N在55℃下的半衰期为35 min,比野生型提高了95%。突变体D476N的T_(50)值比野生型提高4℃。突变体D476N的K_m值为97.98μmol/L,是野生型(85.86μmol/L)1.14倍;突变体稳定性提高的同时,催化活力相对于野生型有略微下降。通过SWISS-MODEL同源模拟野生型和突变体D476N的三维结构,并通过PyMol软件分析,发现突变后的氨基酸残基Asn476位于蛋白质表面的loop环上,通过MOE软件计算,D476N的分子自由能(ΔG)为106.01kcal/mol,比野生酶降低10.3%,这一结果与蛋白质分子自由能和热稳定性呈负相关的理论相符。  相似文献   

9.
Val55是鸡胱抑素(Chicken cystatin,cC)铰链环状区的重要位点.本文采用分子动力学模拟的方法研究了V55位点突变对cC典型的淀粉样突变体I66Q结构稳定性的影响情况,并深入探讨了其分子机制.研究表明V55N和V55D对I66Q突变体都有稳定其结构的作用,但V55N的稳定作用更显著.进一步研究发现V55N和V55D对I66Q的这种稳定作用是由于突变后的55位残基与邻近残基形成了较多稳定的氢键,从而增加了自身位点及Loop1、β2 - β3的稳定性,并进一步稳定了I66Q的α-螺旋和疏水核心结构.这可能最终阻碍胱抑素淀粉样突变体I66Q结构域交换的发生.  相似文献   

10.
热应激时大鼠肺中肾上腺素能受体的变化及其调节机理   总被引:4,自引:0,他引:4  
研究了急性热应激致大鼠肛温达42℃时即刻、持续15min及持续15min并在室温恢复4h后三种状态下肺肾上腺素能受体(α,β)的动态改变及其相应配基去甲肾上腺素(NE),肾上腺素(E)含量的改变。同时测定了肺中磷脂酶A_2(PLA_2)活性的变化。结果表明,急性热应激可使大鼠肺中肾上腺素能受体发生改变,内源性配基NE、E及PLA_2的活性也相应发生改变。NE和/或E含量以及PLA_2活性的改变在肾上腺素能受体变化的过程中可能起重要的调制作用。  相似文献   

11.
Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of "receptor discriminator" residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β(2)-adrenergic receptors (β(2)AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β(2)AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β(2)AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β(2)AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β(2)AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes.  相似文献   

12.
Fujimoto N  Tanaka K  Suzuki T 《FEBS letters》2005,579(7):1688-1692
The purpose of this study is to clarify the amino acid residues responsible for the synergism in substrate binding of arginine kinase (AK), a key enzyme in invertebrate energy metabolism. AKs contain a pair of highly conserved amino acids (D62 and R193) that form an ion pair, and replacement of these residues can cause a pronounced loss of activity. Interestingly, in the oyster Crassostrea AK, these residues are replaced by an N and a K, respectively. Despite this replacement, the enzyme retains high activity and moderate synergism in substrate binding (Kd/Km=2.3). We replaced the N62 by G or D and the K193 by G or R in Crassostrea AK, and also constructed the double mutants of N62G/K193G and N62D/K193R. All of the mutants retained 50-90% of the wild-type activity. In N62G and N62D mutants, the Kmarg for arginine binding was comparable to that of wild-type enzyme, but the Kdarg was increased 2-5-fold, resulting in a strong synergism (Kd/Km=4.9-11.3). On the other hand, in K193G and K193R mutants, the Kmarg was increased 4-fold, and synergism was lost almost completely (Kd/Km=1.0-1.4). The N62G/K193G double mutant showed similar characteristics to the K193G and K193R mutants. Another double mutant, N62D/K193R, similar to the amino acid pair in the wild-type enzyme, had characteristics similar to those of the wild-type enzyme. These results indicate that the amino acid residues 62 and 193 play the key role in mediating the synergism in substrate binding of oyster arginine kinase.  相似文献   

13.
In G protein-coupled receptors (GPCRs), a conserved aspartic acid in the DRY motif at the cytoplasmic end of helix 3 regulates the transition to the active state, while the adjacent arginine is crucial for G protein activation. To examine the functions of these two residues, we made D130I and R131Q mutations in the alpha2A adrenergic receptor (AR). We demonstrate that, unlike other GPCRs, the alpha2A AR is not constitutively activated by the D130I mutation, although the mutation increases agonist affinity. While the R131Q mutation severely disrupts function, it decreases rather than increasing agonist affinity as seen in other GPCRs. We then investigated the molecular effects of the same mutations in a peptide model and showed that Arg131 is not required for peptide-mediated G protein activation. These results indicate that the alpha2A AR does not follow the conventional GPCR mechanistic paradigm with respect to the function of the DRY motif.  相似文献   

14.
Arrestins are a small family of proteins that regulate G protein-coupled receptors (GPCRs). Arrestins specifically bind to phosphorylated active receptors, terminating G protein coupling, targeting receptors to endocytic vesicles, and initiating G protein-independent signaling. The interaction of rhodopsin-attached phosphates with Lys-14 and Lys-15 in β-strand I was shown to disrupt the interaction of α-helix I, β-strand I, and the C-tail of visual arrestin-1, facilitating its transition into an active receptor-binding state. Here we tested the role of conserved lysines in homologous positions of non-visual arrestins by generating K2A mutants in which both lysines were replaced with alanines. K2A mutations in arrestin-1, -2, and -3 significantly reduced their binding to active phosphorhodopsin in vitro. The interaction of arrestins with several GPCRs in intact cells was monitored by a bioluminescence resonance energy transfer (BRET)-based assay. BRET data confirmed the role of Lys-14 and Lys-15 in arrestin-1 binding to non-cognate receptors. However, this was not the case for non-visual arrestins in which the K2A mutations had little effect on net BRET(max) values for the M2 muscarinic acetylcholine (M2R), β(2)-adrenergic (β(2)AR), or D2 dopamine receptors. Moreover, a phosphorylation-deficient mutant of M2R interacted with wild type non-visual arrestins normally, whereas phosphorylation-deficient β(2)AR mutants bound arrestins at 20-50% of the level of wild type β(2)AR. Thus, the contribution of receptor-attached phosphates to arrestin binding varies depending on the receptor-arrestin pair. Although arrestin-1 always depends on receptor phosphorylation, its role in the recruitment of arrestin-2 and -3 is much greater in the case of β(2)AR than M2R and D2 dopamine receptor.  相似文献   

15.
Ligand binding to G protein-coupled receptors (GPCRs) is thought to induce changes in receptor conformation that translate into activation of downstream effectors. The link between receptor conformation and activity is still insufficiently understood, as current models of GPCR activation fail to take an increasing amount of experimental data into account. To elucidate structure-function relationships in GPCR activation, we used bioluminescence resonance energy transfer to directly assess the conformation of mutants of the chemokine receptor CXCR4. We analyzed substitutions in the arginine cage DRY motif and in the conserved asparagine N(3.35)119, which are pivotal molecular switches for receptor conformation and activation. G(alpha)(i) activation of the mutants was either similar to wild-type CXCR4 (D133N, Y135A, and N119D) or resulted in loss of activity (R134A and N119K). Mutant N119S was constitutively active but further activated by agonist. Bioluminescence resonance energy transfer analysis suggested no simple correlation between conformational changes in response to ligand binding and activation of G(alpha)(i) by the mutants. Different conformations of active receptors were detected (for wild-type CXCR4, D133N, and N119S), suggesting that different receptor conformations are able to trigger G(alpha)(i) activity. Several conformations were also found for inactive mutants. These data provide biophysical evidence for different receptor conformations being active with respect to a single readout. They support models of GPCR structure-activity relationships that take this conformational flexibility of active receptors into account.  相似文献   

16.
A heterogeneity of CCK2 receptors has been reported which could correspond to different states of coupling to G proteins and/or association with different second messenger systems. To investigate these hypotheses, the wild-type CCK2 receptor and three mutants F347A, D100N and K333M/K334T/R335L, expected to modify the coupling of the G protein with the third intracellular loop of the receptor, were transfected into Cos-7 cells and their binding and signalling properties were evaluated using the natural ligand CCK8. Activation of wild-type as well as F347A, D100N or K333M/K334T/R335L CCK2 receptors by this ligand led to a similar arachidonic acid release which was blocked by pertussis toxin and the phospholipase A2 inhibitor, mepacrine. Nevertheless, in contrast to the wild-type CCK2 receptor, addition of CCK8 to cells transfected with the F347A or K333M/K334T/R335L mutants did not result in the production of inositol phosphates while the maximum increase in this second messenger formation was reduced by 30% with the D100N mutant. Taken together, these results suggest that the CCK2 receptor is coupled to two G proteins and that Phe347 and the cluster of basic residues K333/K334/R335 probably play a key role in Gq protein stimulation leading to inositol phosphate production but not in activation of the G protein coupled to phospholipase A2. These data bring additional support at the molecular level to the existence of different affinity states of CCK2 receptors suggested from the results of binding assays and behavioural studies.  相似文献   

17.
We investigated the functional roles of putative active site residues in Escherichia coli CheA by generating nine site-directed mutants, purifying the mutant proteins, and quantifying the effects of those mutations on autokinase activity and binding affinity for ATP. We designed these mutations to alter key positions in sequence motifs conserved in the protein histidine kinase family, including the N box (H376 and N380), the G1 box (D420 and G422), the F box (F455 and F459), the G2 box (G470, G472, and G474), and the "GT block" (T499), a motif identified by comparison of CheA to members of the GHL family of ATPases. Four of the mutant CheA proteins exhibited no detectable autokinase activity (Kin(-)). Of these, three (N380D, D420N, and G422A) exhibited moderate decreases in their affinities for ATP in the presence or absence of Mg(2+). The other Kin(-) mutant (G470A/G472A/G474A) exhibited wild-type affinity for ATP in the absence of Mg(2+), but reduced affinity (relative to that of wild-type CheA) in the presence of Mg(2+). The other five mutants (Kin(+)) autophosphorylated at rates slower than that exhibited by wild-type CheA. Of these, three mutants (H376Q, D420E, and F455Y/F459Y) exhibited severely reduced k(cat) values, but preserved K(M)(ATP) and K(d)(ATP) values close to those of wild-type CheA. Two mutants (T499S and T499A) exhibited only small effects on k(cat) and K(M)(ATP). Overall, these results suggest that conserved residues in the N box, G1 box, G2 box, and F box contribute to the ATP binding site and autokinase active site in CheA, while the GT block makes little, if any, contribution. We discuss the effects of specific mutations in relation to the three-dimensional structure of CheA and to binding interactions that contribute to the stability of the complex between CheA and Mg(2+)-bound ATP in both the ground state and the transition state for the CheA autophosphorylation reaction.  相似文献   

18.
Site-directed mutagenesis and molecular dynamics simulations of the alpha 1B-adrenergic receptor (AR) were combined to explore the potential molecular changes correlated with the transition from R (inactive state) to R (active state). Using molecular dynamics analysis we compared the structural/dynamic features of constitutively active mutants with those of the wild type and of an inactive alpha 1B-AR to build a theoretical model which defines the essential features of R and R. The results of site-directed mutagenesis were in striking agreement with the predictions of the model supporting the following hypothesis. (i) The equilibrium between R and R depends on the equilibrium between the deprotonated and protonated forms, respectively, of D142 of the DRY motif. In fact, replacement of D142 with alanine confers high constitutive activity to the alpha 1B-AR. (ii) The shift of R143 of the DRY sequence out of a conserved 'polar pocket' formed by N63, D91, N344 and Y348 is a feature common to all the active structures, suggesting that the role of R143 is fundamental for mediating receptor activation. Disruption of these intramolecular interactions by replacing N63 with alanine constitutively activates the alpha 1B-AR. Our findings might provide interesting generalities about the activation process of G protein-coupled receptors.  相似文献   

19.
Agonist-dependent regulation of G protein-coupled receptors is dependent on their phosphorylation by G protein-coupled receptor kinases (GRKs). GRK2 and GRK3 are selectively regulated in vitro by free Gbetagamma subunits and negatively charged membrane phospholipids through their pleckstrin homology (PH) domains. However, the molecular binding determinants and physiological role for these ligands remain unclear. To address these issues, we generated an array of site-directed mutants within the GRK2 PH domain and characterized their interaction with Gbetagamma and phospholipids in vitro. Mutation of several residues in the loop 1 region of the PH domain, including Lys-567, Trp-576, Arg-578, and Arg-579, resulted in a loss of receptor phosphorylation, likely via disruption of phospholipid binding, that was reversed by Gbetagamma. Alternatively, mutation of residues distal to the C-terminal amphipathic alpha-helix, including Lys-663, Lys-665, Lys-667, and Arg-669, resulted in decreased responsiveness to Gbetagamma. Interestingly, mutation of Arg-587 in beta-sheet 3, a region not previously thought to interact with Gbetagamma, resulted in a specific and profound loss of Gbetagamma responsiveness. To further characterize these effects, two mutants (GRK2(K567E/R578E) and GRK2(R587Q)) were expressed in Sf9 cells and purified. Analysis of these mutants revealed that GRK2(K567E/R578E) was refractory to stimulation by negatively charged phospholipids but bound Gbetagamma similar to wild-type GRK2. In contrast, GRK2(R587Q) was stimulated by acidic phospholipids but failed to bind Gbetagamma. In order to examine the role of phospholipid and Gbetagamma interaction in cells, wild-type and mutant GRK2s were expressed with a beta(2)-adrenergic receptor (beta(2)AR) mutant that is responsive to GRK2 phosphorylation (beta(2)AR(Y326A)). In these cells, GRK2(K567E/R578E) and GRK2(R587Q) were largely defective in promoting agonist-dependent phosphorylation and internalization of beta(2)AR(Y326A). Similarly, wild-type GRK2 but not GRK2(K567E/R578E) or GRK2(R587Q) promoted morphinedependent phosphorylation of the mu-opioid receptor in cells. Thus, we have (i) identified several specific GRK2 binding determinants for Gbetagamma and phospholipids, and (ii) demonstrated that Gbetagamma binding is the limiting step for GRK2-dependent receptor phosphorylation in cells.  相似文献   

20.
Yoon HY  Cho EH  Yang SJ  Lee HJ  Huh JW  Choi MM  Cho SW 《Biochimie》2004,86(4-5):261-267
In the present study, the cassette mutagenesis at several putative positions (K94, G96, K118, K130, or D172) was performed to examine the residues involved in the glutamate-binding of the human glutamate dehydrogenase isozymes (hGDH1 and hGDH2). None of the mutations tested affected the expression or stability of the proteins. There was dramatic reduction in the catalytic efficiency in mutant proteins at K94, G96, K118, or K130 site, but not at D172 site. The K(M) values for glutamate were 4-10-fold greater for the mutants at K94, G96, or K118 site than for the wild-type hGDH1 and hGDH2, whereas no differences in the K(M) values for NAD(+) were detected between the mutant and wild-type enzymes. For K130Y mutant, the K(M) value for glutamate increased 1.6-fold, whereas the catalytic efficiency (k(cat)/K(M)) showed only 2-3% of the wild-type. Therefore, the decreased catalytic efficiency of the K130 mutant mainly results from the reduced k(cat) value, suggesting a possibility that the K130Y residue may be involved in the catalysis rather than in the glutamate-binding. The D172Y mutant did not show any changes in k(cat) value and K(M) values for glutamate and NAD(+), indicating that D172Y is not directly involved in catalysis and substrates binding of the hGDH isozymes. For sensitivity to ADP activation, only the D172Y mutant showed a reduced sensitivity to ADP activation. The reduction of ADP activation in D172Y mutant was more profoundly observed in hGDH2 than in hGDH1. There were no differences in their sensitivities to GTP inhibition between the wild-type and mutant GDHs at all positions tested. Our results suggest that K94, G96, and K118 residues play an important role, although at different degrees, in the binding of glutamate to hGDH isozymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号