首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对造血干/祖细胞体外扩增对培养环境的需求, 结合静/动态培养的特点, 开发了一种新型的生物反应器用于造血干/祖细胞的体外扩增。在该生物反应器内, 采用SCF+TPO+Flt-3细胞因子组合, 比较了静态和循环培养两种方式体外扩增脐血CD34+细胞的效果。培养7 d后, 总细胞分别扩增了(13.86 ± 4.26)和(7.23 ± 2.67)倍, 显示静态培养有利于总细胞的扩增; CD34+细胞扩增倍数、培养物中CD34+细胞含量均相近, 无显著性差异; 而CD34+CD38-细胞扩增倍数以及培养物中CD34+CD38?细胞的百分含量分别为(1.82 ± 0.58)和(3.90 ± 0.85)倍以及(9.45 ± 4.85)和(37.47 ± 14.06)%, 循环培养明显高于静态培养。可见, 在该生物反应器内, 采用静态和循环两种培养方式, 均能实现造血干/祖细胞的体外扩增, 但静态培养促使造血干细胞向定向祖细胞分化, 而循环培养则更有利于早期造血干细胞的扩增。  相似文献   

2.
Wnt 信号通路在造血干/祖细胞自我更新的过程中发挥至关重要的作用 . 纯化的 Wnt3a 蛋白可以实现造血干/祖细胞的扩增 . 通过病毒转染原代小鼠骨髓基质细胞,建立转基因滋养层细胞 . 通过共培养对转基因滋养层细胞扩增 CD34+ 造血干/祖细胞的作用进行了研究 . 实验结果显示 , 与普通滋养层加细胞因子组相比,经转基因滋养层加细胞因子组培养的 CD34+造血干/祖细胞集落形成能力 (CFC) 是其 (1.55±0.06) 倍;混合集落形成能力是其 (1.95±0.26) 倍;高增殖潜能集落形成能力 (HPP-CFC) 是其 (1.45±0.40) 倍; LTC-IC 活性是其 (3.83±0.86) 倍 . 结果表明,转基因滋养层细胞通过分泌具有天然活性的 Wnt3a 蛋白能在体外有效地扩增造血干/祖细胞的数量 .  相似文献   

3.
研究了造血干细胞生长因子、白介素-3、白介素-6、粒-巨噬细胞集落刺激因子、粒细胞集落刺激因子及红细胞生成素对脐血造血细胞体外培养的影响及其剂量关系,考察了造血细胞因子单独与联合作用对造血细胞体外培养的影响,证实细胞因子组合使用比细胞因子单独使用效果更好,发现SCF+IL-3+IL-6+GM-CSF+G-CSF+EPO组合对总细胞扩增最佳,SCF+IL-3+IL6+GM-CSF组合对CFU-GM扩增最佳。实验发现培养液更换可大大提高脐血造血细胞总数和祖细胞数产出。在每天更换50%培养液下,脐血总细胞数在第三周扩增了27倍,祖细胞数扩增了21倍。  相似文献   

4.
FL对脐血造血细胞长期液体培养的影响*   总被引:1,自引:0,他引:1  
用脐血进行千细胞移植有许多优点,但有一个主要的缺点是可获得的细胞数量有限。因此脐血干细胞的体外扩增对于其临床应用具有重要意义。考察了Flt-3配体(FL)和干细胞因子(SCF)、白介索3(IL一3)、IL-6、粒细胞集落刺激因子(G-csF)、粒细胞巨噬细胞集落刺激因子(GM—CSF)的组合对脐血细胞扩增和分化的影响。培养42d,总细胞最多扩增了385,30±163 51倍(FL+SCF+G.CSF+GM—CSF),粒细胞巨噬细胞集落形成单位(CFU-GM)在第28天达到最高,最高扩增了409.52±189.50倍(FL十SCF+IL-3+IL一6)。FL与SCF等细胞因子具有协同作用,对所有考察的细胞因子组合中,加入FL都使总细胞和CFUGM的扩增倍数增加。FL+SCF培养的总细胞扩增最小,而CFU-GM长时间保持在较高水平,表明这FL和SCF有利于保持造血干细胞的活性,防止细胞分化。在存在G-CSF和GMCSF的培养中,总细胞获得了最大的扩增,但CFU-GM达到最大后很快下降至O,表明G-CSF和GM—CSF促进了细胞的分化。结果提示,细胞因子组合对脐血造血细胞的扩增和分化具有重要的作用.FL和SCF可促进造血细胞的扩增,而G-CSF和GM—CSF等可导致细胞的过度分化。  相似文献   

5.
考察了在添加细胞因子和未添加细胞因子培养条件下的造血细胞群体的生长和代谢,研究了长期培养条件下造血祖细胞生长规律。在静态培养条件下,脐血造血细胞群体的比生长速率为0.34d-1,倍增时间为2d。培养后期,造血细胞消耗了大部分葡萄糖,乳酸浓度可达40 mmol/L。在造血细胞长期培养条件下,CFU-GM产出最高峰在培养第2周与第3周之间。BFU-E产出最高峰在培养第1周。每天换50%培养液,造血细胞总数扩增了14倍,CFU-GM扩增了13倍,BFU-E扩增了5倍。  相似文献   

6.
在模拟骨髓造血壁龛(hematopoietic niche)的氧分压条件下,探讨微囊化成骨细胞(osteoblasts,OB)对脐血造血干/祖细胞(HSPC)体外扩增的支持和调控机理.分离培养人髂骨OB,采用聚电解质络合法将第3代的OB以密度为8×105 ml包埋在直径为0.5 mm的明胶-海藻酸钠-壳聚糖(GAC)微胶珠中.将微珠+造血干/祖细胞(A′组)、造血干/祖细胞(B′组)及微珠(C′组)置于6孔板,在5%氧分压下进行培养.同时在20%常氧条件下设置同样分组培养作为对照(A,B,C).通过流式细胞分析和半固体细胞集落培养,观察比较各培养体系中造血干/祖细胞的扩增,并检测体系内白血病抑制因子(LIF)和白介素-6(IL-6)的含量变化以探讨作用机理.经过倒置相差显微镜观察,人成骨细胞在微珠中分散均匀,生长状态良好.微珠内部有丰富的孔道供营养物质传递,有大量造血干/祖细胞弱黏附于微珠表面.经过7天的培养,A′、B′、A、B四组造血细胞的扩增倍数分别为(49.0 ± 4.6),(3.3 ± 0.5),(17.7 ± 1.2)和(1.9 ± 0.2).A′、B′、A 组的CD34+细胞分别扩增了(87.6 ± 8.3), (2.2 ± 0.3)和(14.9 ± 1.0)倍,B组则出现下降.A′、B′、A、B四组CFU-Cs集落扩增倍数分别为(9.8 ± 0.8),(3.5 ± 0.4), (6.9 ± 0.7)和(2.6 ± 0.2).低氧共培养体系比常氧共培养体系和非共培养体系对造血干/祖细胞的扩增有更大的促进作用.A′、B′、C′中IL-6和LIF含量明显高于对应的A、B、C组,与扩增倍数的差异相对应.微囊化成骨细胞对造血干/祖细胞扩增有明显的促进作用,5%氧分压接近体内造血壁龛氧环境,在此环境中成骨细胞分泌细胞因子量增多并通过其对造血干/祖细胞的扩增进行调节.  相似文献   

7.
目的 :建立一种简便、有效的脐血造血干 /祖细胞体外大量扩增培养体系。方法 :淋巴细胞分离液分离的脐血单个核细胞在SCF ,IL - 3,IL - 6三种细胞因子的作用下 ,于悬浮搅拌培养体系中培养 ,分析其总细胞数、CFU -GM、CD34+ 细胞的扩增倍数。结果 :脐血单个核细胞在悬浮搅拌培养体系中培养 12天后 ,其总细胞数、CFU -GM、CD34+ 细胞的扩增倍数分别为 6 .31± 1.5 2 ,2 0 .6 3± 1.5 4和 7.11± 1.12。结论 :悬浮搅拌培养体系是脐血造血干 /祖细胞体外大量扩增的有效培养体系。  相似文献   

8.
搅拌式生物反应器中造血细胞的灌注培养   总被引:4,自引:0,他引:4  
为了消除造血细胞静态培养中存在的浓度梯度和搅拌悬浮培养时换液引起的波动,为造血细胞体外扩增提供更理想的培养环境和操作方式,利用自主开发的造血细胞重力沉降截留系统结合有溶氧和pH控制的生物反应器进行了脐血造血细胞的灌注培养。两次灌注培养中总细胞分别扩增11.5和18.6倍,扩增倍数最大时,CFU-Mix分别扩增23.2倍和20.4倍、 CFU-GM扩增13.9倍和21.5倍、BFU-E 扩增8.0倍和6.9倍、CD34+细胞扩增17.1倍和15.4倍。培养到12d时,第一次实验由267×106单个核细胞扩增得到1082×106个总细胞,6.31×106个CFU-GM,6.2×106个CFU-Mix和23×106个CD34+细胞;第二次实验由180×106单个核细胞扩增得到1.080×106个总细胞,4.65×106个CFU-GM,11.0×106个CFU-Mix和25.0×106个CD34+细胞,这达到了临床规模,由于控制了较低的溶氧和稳定的培养环境,细胞中干/祖细胞含量显著高于方瓶。但灌注培养到后期细胞密度达到较高后,细胞生长受到抑制,这应该是由细胞密度过高本身所引起。搅拌式反应器中进行灌注培养有利于造血干/祖细胞的进一步扩增,培养得到的细胞中干/祖细胞含量较高,培养规模达到了临床要求,但过高的细胞密度将对造血细胞的生长产生抑制。  相似文献   

9.
目的:探讨经深低温冻存组织工程化软骨修复关节软骨缺损的可行性。方法:分离收集3周龄新西兰大白兔关节软骨细胞进行体外培养,接种于PGA三维支架材料上,复合物体外培养1周后冻存,冻存1个月后解冻、复苏及体外培养,1周后接种于已建立的双侧兔膝关节软骨缺损模型的膝关节软骨缺损处,并设对照组。分别于手术后4周、8周、12周行大体标本及组织观察。结果:大体观察结果表明,实验组与对照组缺损处均由软骨组织修复;组织学观察可以见到实验组和对照组关节软骨缺损处有密集的软骨细胞,均有软骨生成及基质分泌,两组差异无统计学意义。结论:应用深低温冻存组织工程化软骨修复关节软骨缺损的方法是有效可行的,为其进一步临床应用提供了实验依据。  相似文献   

10.
目的揭示脐血清在骨髓长期培养中的效应,为脐血清的应用提供基础。方法以Dexter培养法,观察混合脐血清(MCBS)、组合细胞因子(CK)在长期骨髓培养中对骨髓单个核细胞(BMMNC)形成鹅卵石造血区(CAFC)、长期培养起始细胞(LTC-IC)、有核细胞(NCC)的生长。结果10例人骨髓,106BMMNC培养5周后,CAFC、LTC-IC分别为37.1±12.4/(ml.well),40.9±10.6/(ml.well),NCC由接种时的106/(ml.well)增至(1.63±0.17)106/(ml.well),加入10%MCBS则可使三者得到明显扩增,但不及组合CK;10%MCBS还能明显提高组合CK对三者的扩增;20%MCBS不能取代骨髓长期培养中的血清和组合CK对三者的扩增。结论MCBS中含有类似GM-CSF、SCF、IL-3、IL-6、EPO等一类能使CAFC、LTC-IC、NCC得到明显扩增的“活性物质”。  相似文献   

11.
12.
13.
14.
通过对6种藓类植物,即褶叶青藓(Brachythecium salebrosum(Web.et Mohr.)B.S.G.)、湿地匐灯藓(Plagiomnium acutum(Lindb.)Kop.)、侧枝匐灯藓(Plagiomnium maximoviczii(Lindb.)Kop.)、大凤尾藓(Fissidensnobilis Griff.)、大羽藓(Thuidium cymbifolium(Doz.et Molk.)B.S.G.)和大灰藓(Hypnum plumaeforme Wils.)嫩茎和老茎的石蜡切片和显微观察发现,同一藓类植株的嫩茎和老茎,茎结构稳定,不同种藓类植物茎横切面具有不同特征.植物体茎横切面形状、表层细胞的层数、细胞大小和细胞壁厚薄、皮层细胞大小和形状、中轴的有无以及比例等特征可以作为藓类植物的分科分类依据之一.  相似文献   

15.
16.
17.
18.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号