首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
宁夏引黄灌区土壤有机碳密度时空变化特征   总被引:2,自引:0,他引:2  
利用1980年全国第二次土壤普查的102个土壤剖面(0~100 cm)和147个表层样(0~20 cm),以及2009年采集的39个土壤剖面和241个表层土样属性数据,分别计算灌区表层和剖面土壤有机碳密度,通过对比分析,研究了宁夏引黄灌区近30年来土壤有机碳储量的变化特征。结果表明:1980—2009年,宁夏引黄灌区表层(0~20 cm)土壤有机碳密度由16.57 Mg C·hm-2增至21.44 Mg C·hm-2,平均年增幅为0.98%(P0.01);剖面(0~100 cm)土壤有机碳密度平均由55.70 Mg C·hm-2增至58.49 Mg C·hm-2,平均年增幅为0.17%(P0.05);土壤类型是影响灌区土壤有机碳储量的主导性因素;灌区土壤有机碳密度与灌溉时间之间有较强的相关性(P0.01),灌溉耕作时间越长,土壤有机碳密度越高;单位面积化肥施用量、单位面积作物产量及作物种植类型对灌区土壤有机碳变化产生了重要影响;气温和降水对土壤有机碳变化影响不明显。引黄灌溉耕作对提高灌区土壤有机碳储量和降低温室气体排放具有积极的作用。  相似文献   

2.
罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化   总被引:6,自引:0,他引:6  
对罗浮栲天然常绿阔叶林土壤1m剖面内可溶性有机碳(DOC)进行了研究,结果表明:林地土壤DOC的平均含量随土层深度增加呈下降趋势,表层(0~5cm)土壤DOC的平均含量为55.69 mg·kg-1,分别与其他土层间含量存在显著性差异(P<0.01);不同土层的DOC含量占土壤有机碳的比例也随土层深度增加而降低,1m剖面内DOC的平均含量占土壤有机碳含量的0.14%;各季节土壤剖面DOC含量随土层深度增加均呈下降趋势,冬季下降趋势最为显著,夏季下降趋势相对平缓.土壤剖面DOC含量的季节变化为:冬季>秋季>春季>夏季,各季节不同土层DOC含量占土壤有机碳比例的变化趋势均不明显;不同土层土壤DOC含量的季节变化差异显著(P<0.01),表层(0~5cm)土壤间差异最为明显.  相似文献   

3.
喀斯特小流域土壤有机碳空间异质性及储量估算方法   总被引:3,自引:0,他引:3  
张珍明  周运超  田潇  黄先飞 《生态学报》2017,37(22):7647-7659
为了准确估算土壤有机碳储量,利用网格法采集2755个土壤剖面,共计23536个土壤样品,研究了喀斯特小流域土壤有机碳含量分布特征,并以"土壤类型法"为基准,对土壤分布面积、石砾含量、岩石裸露率、土层厚度等指标进行修正,合理的优化了土壤有机碳储量计算公式,探索出一种专属于喀斯特地区土壤有机碳储量的估算方法,结果表明:不同土层深度和土壤类型下土壤有机碳含量存在明显差异,土壤有机碳含量随着土层深度的增加而逐渐减小,不同土属的有机碳含量减小的幅度有所差异,不同坡位和坡向的有机碳含量大小为:阳坡阴坡,坡中上部坡顶坡中坡中下坡坡底,不同土地利用方式下土壤有机碳含量大小顺序为:林地灌草地旱地水田;土壤有机碳含量与坡度、海拔、岩石裸露率均呈极显著正相关关系,与土层厚度、土壤容重呈显著负相关;喀斯特地区土壤异质性较大,不同修正指标对土壤有机碳储量估算的影响程度为:土壤厚度岩石裸露率石砾含量土壤有机碳含量土壤容重;通过修正后的计算公式估算出普定后寨河小流域表层20 cm土壤有机碳密度区间为3.53—5.44 kg/m~2,平均值为:1.24 kg/m~2,100 cm土壤有机碳密度区间为4.44—14.50 kg/m~2,平均值为12.12 kg/m~2,土壤有机碳储量为5.39×10~5t。  相似文献   

4.
鼎湖山自然保护区土壤有机碳贮量和分配特征   总被引:63,自引:4,他引:59  
基于61个土壤剖面的数据,分析了鼎湖山自然保护区4种自然植被类型(沟谷雨林、季风常绿阔叶林、山地常绿阔叶林和山地灌木草丛)和4种次生植被类型(马尾松针叶林、针阔混交林、次生季风常绿阔叶林和常绿灌丛)的土壤有机碳贮量及其分配特征.结果如下(1)各植被类型土壤有机碳含量随深度增加而减少,但植被类型不同其减少程度不同.除 >40cm土层外,自然植被类型的土壤有机碳含量明显高于次生植被类型.(2)土壤碳密度和土壤有机碳含量一样随深度增加而减少.两大植被类型间比较,除山地灌木草丛 >40cm土层外,自然植被类型各个土层土壤碳密度都高于所有的次生植被类型对应的碳密度.对于整个土层而言,各植被类型土壤碳密度在30.9~127.9 t/hm2间,总平均为73.9 t/hm2.(3)各植被类型的土壤厚度平均为36.7~73.3cm,总平均为56.4cm.除了山地常绿阔叶林外,土壤厚度基本上沿海拔高度增加而减少.(4)保护区各植被类型总面积为1028.4 hm2,土壤总碳贮量为72287.0 t,其中0~10、10~20、20~40cm和 >40cm四个土层分别占32.0%、20.6%、25.8%和21.6%.自然植被土壤碳贮量在表层(0~20cm)的比重比次生植被的高.所有的植被类型中,混交林碳贮量贡献最大,季风常绿阔叶林次之.自然植被类型土壤在碳贮存方面发挥积极的作用.(5)通过比较,鼎湖山保护区土壤碳密度整体较低,表层土壤碳贮量贡献较大.分析表明人为干扰是制约土壤碳贮存量大小的重要因素.  相似文献   

5.
祁连山不同植被类型土壤碳贮量和碳通量   总被引:13,自引:0,他引:13  
采用野外调查测定、野外定位观测和室内分析相结合的方法,在植被类型变化较大林区,选择邻近相同海拔、坡向和土壤类型的天然林(青海云杉林、祁连圆柏林、高山灌丛林)、人工林(13年生华北落叶松林)、牧坡草地和农田等植被类型土壤为研究对象,研究了祁连山不同植被类型的土壤碳动态.结果表明:天然林、牧坡草地、农田和人工林的土壤有机碳含量分别为59.45~84.7、78.30、13.51和43.25 g·kg-1,平均土壤有机碳密度分别为15.96~19.95、17.74、10.63和15.97 kg·m-2,土壤有机碳平均周转时间分别为27~36、25、23和33 a;不同植被类型土壤CO2通量依次为青海云杉林584.03 g C·m-2·a-1,祁连圆柏林517.63 g C·m-1·a-1,高山灌丛林601.00 g C·m-2·a-1,牧坡草地796.89 g C·m-2·a-1,农田281.75 g C·m-1·a-1,人工林569.92 g C·m-2·a-1;同一植被类型中,土壤有机碳含量和土壤碳密度随土壤深度增加而降低,而土壤有机碳周转时间则随深度增加而增大.  相似文献   

6.
广西不同森林类型土壤有机碳的空间异质性   总被引:1,自引:0,他引:1       下载免费PDF全文
宋敏  彭晚霞  徐庆国  曾馥平  杜虎  张浩  曾昭霞 《广西植物》2017,37(11):1418-1427
采用经典统计学和地统计学相结合的方法,研究广西10类主要森林类型不同土层(0~10、10~20、20~30、30~50、50~100 cm)土壤有机碳含量的空间异质性。结果表明:广西森林不同土层土壤有机碳平均含量变化为8.01~29.78 g·kg-1,变异系数在50.27%~74.89%之间;10~20 cm土层土壤有机碳的半变异函数符合球状模型,其余土层符合指数模型,且拟合效果均较好;各土层土壤有机碳半变异函数的块金效应为16.75%~49.33%,表现为强烈或中等强度的空间自相关性;Kriging插值结果显示,不同森林各土层土壤有机碳含量的分布具有一定相似的空间分布特征,总体表现为北高南低,最高和最低值分别出现在东北和东南;广西不同森林类型不同土壤深度土壤有机碳含量和变异系数不同,0~100 cm土壤有机碳平均含量的大小顺序为硬阔杉木石山林软阔竹林八角桉树油茶栎类松树,总体上土壤有机碳含量随土壤深度的增加而降低,变异系数则相反。广西森林土壤的空间异质性受结构性和人为因素的共同制约,其中结构性因素起主导作用。因此,加强自然林封育和人工林保育、优化调控桉树林和经济林种植规模是提高广西森林固碳潜力的重要措施。  相似文献   

7.
为探讨喀斯特峰丛洼地景观类型表层土壤和土壤剖面有机碳和氮素的分布特征,在广西壮族自治区环江毛南族自治县采集典型景观类型耕地、退耕还草地、退耕还林地和林地表层样品及耕地、退耕还草地、退耕还林地剖面样品,进行了系统的分析。结果表明:林地土壤土层浅薄,但其表层土壤有机碳和全氮含量平均高达46.14和4.87g·kg-1,耕地土壤有机碳和全氮含量为13.96和1.88g·kg-1,退耕还林地表层土壤有机碳和全氮含量比耕地明显提高,退耕还草地比耕地略高;耕地0~40cm和退耕还草地0~30cm土壤有机碳和全氮含量随剖面深度增加急剧下降,耕地40~100cm和退耕还草地30~100cm则缓慢下降,退耕还林地土壤厚度一般小于1m,土壤有机碳和全氮含量在整个剖面均随深度增加急剧下降;说明地形、人类活动和土层厚度等影响表层土壤有机碳和全氮含量,其中地形和人类活动是关键影响因子;植被类型影响土壤有机碳和全氮的剖面分布,退耕还林(草)使土壤有机碳和氮储量增加。  相似文献   

8.
胶州湾滨海湿地土壤有机碳时空分布及储量   总被引:1,自引:1,他引:0  
訾园园  郗敏  孔范龙  李悦  杨玲 《生态学杂志》2016,27(7):2075-2083
在胶州湾选取芦苇、碱蓬、光滩及大米草4种典型滨海湿地类型,分季节和层次采集土壤样品,测定土壤有机碳含量,分析滨海湿地土壤有机碳的时空分布及储量.结果表明: 垂直方向上,除光滩湿地沿剖面呈先减小后稍有上升的趋势外,其他湿地均随土壤深度的增加而减小;水平方向上,湿地土壤有机碳含量表现为大米草湿地>光滩湿地>碱蓬湿地>芦苇湿地;季节上,湿地土壤有机碳含量表现为春季>夏季>秋季>冬季.土壤有机碳含量与土壤含盐量、含水率、TN及C/N呈正相关,与土壤容重、pH值呈负相关.不同类型湿地土壤剖面有机碳密度表现为光滩湿地>芦苇湿地>碱蓬湿地,湿地类型对土壤有机碳含量和有机碳密度分布的影响存在一定差异.因储碳层厚度及储碳层内有机碳密度的差异,光滩湿地单位面积有机碳储量明显高于碱蓬和芦苇湿地,具有较大的储碳潜能,对研究区滨海湿地起到一定的碳汇作用.  相似文献   

9.
湖南省森林土壤有机碳密度及碳库储量动态   总被引:4,自引:0,他引:4  
基于2000—2014年文献和著作资料中的湖南省森林土壤剖面有机碳含量数据,湖南会同杉木林生态系统国家野外科学观测研究站近15年的实测数据,分析了湖南省主要森林类型土壤有机碳密度,结合1983年至2009年湖南省4次森林资源清查数据,研究了湖南省森林土壤有机碳库储量的动态特征。结果表明:湖南省主要森林类型土壤有机碳算术平均含量在9.53—22.86g/kg之间,灌木林最高,土壤有机碳含量的分异主要发生在0—40 cm土层,0—80 cm土壤层有机碳密度在95.44—181.30 t C/hm2之间,平均为137.15 t C/hm2,主要分布在0—40 cm土层中,随土壤深度增加,各森林类型土壤有机碳密度的差异下降,受森林类型的影响减弱。从1983—1987年到2009年,湖南省乔木林土壤层(0—80 cm)有机碳库储量净增加了414.86×106t C,面积加权平均有机碳密度提高了10.98 t C/hm2,不同乔木林土壤层(0—80 cm)有机碳库储量的差异随着时间进程逐渐增大,主要分布在杉木林、松木林、阔叶林。天然林是湖南省乔木林土壤有机碳库储量的主要贡献者,人工林土壤有机碳储量正逐步提高,经济林、竹林、灌木林对湖南省森林土壤层(0—80 cm)有机碳库储量贡献不同,且动态变化趋势也不同。森林土壤层有机碳库储量的变化与各森林类型面积的变化密切相关,而各森林类型面积的增减,与各项林业政策的实施密切相关。因此,人类活动深刻影响森林土壤的碳汇功能。  相似文献   

10.
黄土丘陵区植被恢复对深层土壤有机碳储量的影响   总被引:4,自引:0,他引:4  
以黄土丘陵区不同恢复年限的人工刺槐林、人工柠条林和自然撂荒地为对象,以0~100 cm(浅层)土壤为对照,研究了不同植被类型下100 ~ 400 cm(深层)土壤有机碳(SOC)储量的剖面分布特征和累积动态.结果表明:随土壤深度增加,浅层SOC储量显著降低,深层SOC变化趋势不明显,但储量很高,约占0~400cm剖面SOC的60%.80 ~ 100 cm土层的SOC储量与深层100~200和200 ~ 400 cm的SOC储量呈显著线性相关,是0~100 cm5个土层中与深层SOC储量变化相关性最强的一层,可用以估算深层SOC储量.人工刺槐林、柠条林、撂荒地表层(0 ~ 20 cm) SOC储量显著高于坡耕地,而深层SOC储量在不同利用类型间差异不显著.随植被恢复年限的增加,深层SOC储量呈上升趋势,人工刺槐林和人工柠条林100 ~400 cm SOC平均累积速率分别为0.14和0.19t·hm-2·a-1,人工柠条林与浅层SOC累积速率相当.在估算黄土丘陵区植被恢复的土壤固碳效应时,应考虑深层土壤有机碳累积量,否则会严重低估植被恢复的土壤固碳效应.  相似文献   

11.
Carbon (C) storage and sequestration in agricultural soils is considered to be an important issue in the study of terrestrial C cycling and global climatic change. The baseline C stock and the C sequestration potential are among the criteria for a region or a state to adopt strategies or policies in response to commitment to the Kyoto Protocol. Paddy soils represent a large portion of global cropland. However, little information on the potential of C sequestration and storage is available for such soils. In this paper, an estimation of the topsoil soil organic carbon (SOC) pool and the sequestration potential of paddy soils in China was made by using the data from the 2nd State Soil Survey carried out during 1979–1982 and from the nationwide arable soil monitoring system established since then. Results showed that the SOC density ranged from 12 to 226 t C ha?1 with an area‐weighted mean density of 44 t C ha?1, which is comparable to that of the US grasslands and is higher than that of the cultivated dryland soils in China and the US. The estimated total topsoil SOC pool is 1.3 Pg, with 0.85 Pg from the upper plow layer and 0.45 Pg from the plowpan layer. This pool size is ~2% of China's total storage in the top 1 m of the soil profiles and ~4% of the total topsoil pool, while the area percentage of paddy soil is 3.4% of the total land. The C pool in paddy soils was found predominantly in southeast China geographically and in the subgroups of Fe‐accumulating and Fe‐leaching paddy soils pedogenetically. In comparison with dryland cultivation, irrigation‐based rice cultivation in China has induced significant enrichment of SOC storage (0.3 Pg) in paddy soils. The induced total C sequestration equals half of China's total annual CO2 emission in the 1990s. Estimates using different SOC sequestration scenarios show that the paddy soils of China have an easily attainable SOC sequestration potential of 0.7 Pg under present conditions and may ultimately sequester 3.0 Pg. Soil monitoring data showed that the current C sequestration rate is 12 Tg yr?1. The total C sequestration potential and the current sequestration rate of the paddy soils are over 30%, while the area of the paddy soils is 26% that of China's total croplands. Therefore, practicing sustainable agriculture is urgently needed for enhancing SOC storage to realize the ultimate SOC sequestration of rice‐based agriculture of China, as the current C sequestration rate is significantly lower than the potential rate.  相似文献   

12.
Precise estimations of soil organic carbon (SOC) stocks are of decided importance for the detection of C sequestration or emission potential induced by land use changes. For Germany, a comprehensive, land use–specific SOC data set has not yet been compiled. We evaluated a unique data set of 1460 soil profiles in southeast Germany in order to calculate representative SOC stocks to a depth of 1 m for the main land use types. The results showed that grassland soils stored the highest amount of SOC, with a median value of 11.8 kg m?2, whereas considerably lower stocks of 9.8 and 9.0 kg m?2 were found for forest and cropland soils, respectively. However, the differences between extensively used land (grassland, forest) and cropland were much lower compared with results from other studies in central European countries. The depth distribution of SOC showed that despite low SOC concentrations in A horizons of cropland soils, their stocks were not considerably lower compared with other land uses. This was due to a deepening of the topsoil compared with grassland soils. Higher grassland SOC stocks were caused by an accumulation of SOC in the B horizon which was attributable to a high proportion of C‐rich Gleysols within grassland soils. This demonstrates the relevance of pedogenetic SOC inventories instead of solely land use–based approaches. Our study indicated that cultivation‐induced SOC depletion was probably often overestimated since most studies use fixed depth increments. Moreover, the application of modelled parameters in SOC inventories is questioned because a calculation of SOC stocks using different pedotransfer functions revealed considerably biased results. We recommend SOC stocks be determined by horizon for the entire soil profile in order to estimate the impact of land use changes precisely and to evaluate C sequestration potentials more accurately.  相似文献   

13.
不同蔬菜种植方式对土壤固碳速率的影响   总被引:2,自引:0,他引:2  
近年来蔬菜地面积快速增加已成为我国农田土壤碳库变化的重要驱动因素,研究蔬菜种植方式对农田土壤固碳影响,对于揭示我国农田土壤碳库变化具有重要意义。通过实地调查与采样分析,研究了山东省苍山县3种蔬菜种植方式(大田种植、季节性大棚和长年性大棚种植)对农田土壤固碳速率影响及其随种植时间的变化规律。结果表明,3种种植方式下蔬菜地土壤有机碳含量均随种植时间的增加而增加;长年性大棚、季节性大棚和大田种植方式下0—100 cm土层土壤平均固碳速率分别达到1.44、2.73、1.60 Mg.hm-2.a-1;表层土壤(0—20 cm)平均固碳速率依次为0.64 Mg.hm-2.a-1、0.36 Mg.hm-2.a-1、0.20Mg.hm-2.a-1,3种蔬菜种植方式的土壤固碳速率存在显著差异。同样为蔬菜地,选择合理种植方式是提高农田土壤固碳速率的重要途径。  相似文献   

14.
Evaluations of soil organic carbon (SOC) stocks are often based on assigning a carbon density to each one of a number of ecosystems or soil classes considered, using data from soil profiles within these categories. A better approach, in which the use of classification methods by which extrapolation of SOC data to larger areas is avoided, can only be used if enough data are available at a sufficiently small scale. Over 190 000 SOC measurements (0–24 cm) have been made in the Flemish cropland (the Northern part of Belgium) in the 1989–2000 period. These SOC data were grouped into 3‐year periods and as means plus standard deviation per (part of) community (polygons). This large dataset was used to calculate SOC stocks and their evolution with time, without data extrapolation. Using a detailed soil map, larger spatial groups of polygons were created based on soil texture and spatial location. Linear regression analysis showed that in the entire study area, SOC stocks had decreased or at best had remained stable. In total, a yearly decrease of 354 kton OC yr?1 was calculated, which corresponds with a net CO2 emission of 1238 kton CO2 yr?1. Specific regions with a high carbon sequestration potential were identified, based on SOC losses during the 1989–2000 period and the mean 1999 SOC content, compared to the average SOC content of soils in Flanders with a similar soil texture. When restoring the SOC stocks to their 1990 level, we estimated the carbon sequestration potential of the Flemish cropland soils to be some 300 kton CO2 yr?1 at best, which corresponds to a 40‐year restoration period. In conclusion, we can say that in regions where agricultural production is very intense, carbon sequestration in the cropland may make only a very modest contribution to a country's effort to reduce greenhouse gas emissions.  相似文献   

15.
Agricultural soils in China have been estimated to have a large potential for carbon sequestration, and modelling and literature survey studies have yielded contrasting results of soil organic carbon (SOC) stock change, ranging from ?2.0 to +0.6% yr?1. To assess the validity of earlier estimates, we collected 1394 cropland soil profiles from all over the country and measured SOC contents in 2007–2008, and compared them with those of a previous national soil survey conducted in 1979–1982. The results showed that average SOC content in the 0–20 cm soil increased from 11.95 g kg?1 in 1979–1982 to 12.67 g kg?1 in 2007–2008, averaging 0.22% yr?1. The standard deviation of SOC contents decreased. Four major soil types had statistically significant changes in their mean SOC contents for 0–20 cm. These were: +7.5% for Anthrosols (paddy soils), +18.3% for Eutric Cambisols, +30.5% for Fluvisols, and ?22.3% for Chernozems. The change of SOC contents showed a negative relationship with the average SOC contents of the two sampling campaigns only when soils in the region south of Yangtse River were excluded. SOC contents of the two major soil types in the region south of Yangtse River, i.e., Haplic Alisols/Haplic Acrisols and Anthrosols (paddy soils), changed little or significantly increased, though with a high SOC content. We suggest that the increase of SOC content is mainly attributed to the large increase in crop yields since the 1980s, and the short history as cropland establishment is mainly responsible for the decrease in SOC content for some soil types and regions showing a SOC decline.  相似文献   

16.
Agroecosystems have a critical role in the terrestrial carbon cycling process. Soil organic carbon (SOC) in cropland is of great importance for mitigating atmospheric carbon dioxide increases and for global food security. With an understanding of soil carbon saturation, we analyzed the datasets from 95 global long-term agricultural experiments distributed across a vast area spanning wide ranges of temperate, subtropical and tropical climates. We then developed a statistical model for estimating SOC sequestration potential in cropland. The model is driven by air temperature, precipitation, soil clay content and pH, and explains 58% of the variation in the observed soil carbon saturation (n=76). Model validation using independent data observed in China yielded a correlation coefficient R 2 of 0.74 (n=19, P<0.001). Model sensitivity analysis suggested that soils with high clay content and low pH in the cold, humid regions possess a larger carbon sequestration potential than other soils. As a case study, we estimated the SOC sequestration potential by applying the model in Henan Province. Model estimations suggested that carbon (C) density at the saturation state would reach an average of 32 t C ha−1 in the top 0–20 cm soil depth. Using SOC density in the 1990s as a reference, cropland soils in Henan Province are expected to sequester an additional 100 Tg C in the future.  相似文献   

17.
芦芽山典型植被土壤有机碳剖面分布特征及碳储量   总被引:15,自引:0,他引:15  
武小钢  郭晋平  杨秀云  田旭平 《生态学报》2011,31(11):3009-3019
摘要: 基于芦芽山沿海拔梯度分布的灌丛草地、针阔混交林、寒温性针叶林和亚高山草甸四类典型植被下土壤剖面实测数据,分析了土壤有机碳的垂直分布特征及其与土壤理化因子的关系。结果表明,各植被类型下土壤剖面上层SOC含量最高,最大值往往出现在10—20 cm层,然后向下逐渐减小。土壤有机质含量由剖面上层最大值向下降低过程中,某深度土壤剖面层段有机质含量急剧减小。亚高山草甸剖面这一深度为20 cm,寒温性针叶林剖面为50 cm,针阔混交林剖面为20 cm,灌丛草地剖面为40 cm。0—10 cm层各植被类型间SOC含量差异不显著;10—20 cm层,亚高山草甸和寒温性针叶林SOC含量显著高于其他类型;20—50 cm层,亚高山草甸SOC含量与灌丛草地接近,显著高于针阔混交林,低于寒温性针叶林。植被类型对有机碳剖面分布影响较大。土壤剖面各层有机碳含量与容重呈显著负相关,与土壤含水量和全氮含量呈显著正相关,与土壤pH值呈弱的负相关,与深层黏粒和粉粒含量正相关,在30—50 cm正相关性显著。逐步回归分析结果表明,亚高山草甸SOC含量与土壤总氮含量、含水量和容重的显著相关,寒温性针叶林SOC含量与全氮含量显著相关,针阔混交林SOC含量则与总氮含量和土壤容重显著相关,而灌丛草地SOC含量与容重显著相关。在20 cm深度,四种植被土壤有机碳密度差异不显著;50 cm深度亚高山草甸、寒温性针叶林土壤有机碳储量显著高于针阔叶混交林和灌丛草地,50 cm深度土壤有机碳储量与海拔高度呈显著线性正相关(R2=0.299,P=0.01)。  相似文献   

18.
The break‐up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large‐scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub‐Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land‐use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land‐use type had an effect on carbon accumulation in the topsoil (0–5 cm), no independent land‐use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha?1 yr?1 (1–20 years old, 0–5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1–10 years old, 1.04 Mg C ha?1 yr?1) compared to earlier abandoned crop fields (11–20 years old, 0.26 Mg C ha?1 yr?1). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model‐based continent‐wide SOC prediction.  相似文献   

19.
Land use induced changes of organic carbon storage in soils of China   总被引:29,自引:0,他引:29  
Using the data compiled from China's second national soil survey and an improved method of soil carbon bulk density, we have estimated the changes of soil organic carbon due to land use, and compared the spatial distribution and storage of soil organic carbon (SOC) in cultivated soils and noncultivated soils in China. The results reveal that ~ 57% of the cultivated soil subgroups ( ~ 31% of the total soil surface) have experienced a significant carbon loss, ranging from 40% to 10% relative to their noncultivated counterparts. The most significant carbon loss is observed for the non‐irrigated soils (dry farmland) within a semiarid/semihumid belt from northeastern to southwestern China, with the maximum loss occurring in northeast China. On the contrary, SOC has increased in the paddy and irrigated soils in northwest China. No significant change is observed for forest soils in southern China, grassland and desert soils in northwest China, as well as irrigated soils in eastern China. The SOC storage and density under noncultivated conditions in China are estimated to ~ 77.4 Pg (1015 g) and ~ 8.8 kg C m?2, respectively, compared to a SOC storage of ~ 70.3 Pg and an average SOC density of ~ 8.0 kg C m?2 under the present‐day conditions. This suggests a loss of ~ 7.1 Pg SOC and a decrease of ~ 0.8 kg C m?2 SOC density due to increasing human activities, in which the loss in organic horizons has contributed to ~ 77%. This total loss of SOC in China induced by land use represents ~ 9.5% of the world's SOC decrease. This amount is equivalent to ~ 3.5 ppmv of the atmospheric CO2 increase. Since ~ 78% of the currently cultivated soils in China have been degraded to a low/medium productivities and are responsible for most of the SOC loss, an improved land management, such as the development of irrigated and paddy land uses, would have a considerable potential in restoring the SOC storage. Assuming a restoration of ~ 50% of the lost SOC during the next 20–50 years, the soils in China would absorb ~ 3.5 Pg of carbon from the atmosphere.  相似文献   

20.
天山北坡雪岭云杉林地开垦的土壤有机碳损失估算   总被引:1,自引:0,他引:1  
常亚鹏  李路  许仲林 《生态学报》2017,37(4):1168-1173
在全球变暖的背景下,由土地利用变化导致的土壤碳库的变化已经受到越来越多的关注。首先采用物种分布模型预测了天山北坡雪岭云杉林的潜在分布,其次估计了与被开垦为农田的雪岭云杉林面积(PSC)以及由林地开垦为农田造成的有机碳损失。PSC分别由雪岭云杉林的现实分布、潜在分布和农田的现实分布确定。云杉林地和农田的土壤有机碳含量由野外采样和实验室分析获得。研究发现,PSC面积为2.68×10~6hm~2,被开垦为农田的雪岭云杉林土壤有机碳的损失为171.7 t/hm~2;研究区总有机碳的损失为459.70Tg。结果表明,研究区的林地恢复和重建项目将会使土壤有机碳储量有所增加,且土壤表层的增加量多于深层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号