首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study examined the effects of genetic manipulation to the donor cell and different types of transgenic donor cells on developmental potential of bovine nuclear transfer (NT) embryos. Four types of bovine somatic cells, including granulosa cells, fetal fibroblasts, fetal oviduct epithelial cells and fetal ovary epithelial cells, were transfected with a plasmid (pCE-EGFP-Ires-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation. After 14 days selection with 800 μg/mL G418, transgenic cell lines from each type of somatic cells were obtained. Nontransgenic granulosa cells and all 4 types of transgenic somatic cells were used as nuclear donor to produce transgenic embryos by NT. There was no significant difference in development rates to the blastocyst stage for NT embryos from transgenic and nontransgenic granulosa cells (44.6% and 42.8%, respectively), and transfer of NT embryos derived from transgenic and nontransgenic granulosa cells to recipients resulted in similar pregnancy rates on day 90 (19% and 25%, respectively). The development rates to the blastocyst stage of NT embryos were significantly different among different types of transgenic donor cells (P<0.05). Blastocyst rates from fetal oviduct epithelial cell and granulosa cell (49.1% and 44.6%, respectively) were higher than those from fetal fibroblast (32.7%) and fetal ovary epithelial cell (22.5%). These results suggest that (i) genetic manipulation to donor cells has no negative effect on in vitro and early in vivo developmental competence of bovine NT embryos and (ii) granulosa and fetal oviduct epithelial cells can be used to produce transgenic bovine NT embryos more efficiently. In addition, GFP can be used to select transgenic NT embryos as a non-invasive selective marker.  相似文献   

2.
We examined whether porcine nuclear transfer (NT) embryos carrying somatic cells have a developmental potential and NT embryos carrying transformed fibroblasts express transgenes in the preimplantation stages. In Experiment 1, different activation methods were applied to NT embryos and the development rates were examined. Relative to A23187 only or A23187/6-DMAP, electrical pulse made a significant increase in both cleavage rate (58.1+/-13.9 or 60.7+/-6.3 vs. 74.9+/-7.5%) and development rate of NT embryos to the blastocyst stage (2.2+/-2.8 or 2.2+/-1.5 vs. 11.0+/-4.1%). In Experiment 2, in vitro developmental competence of NT embryos was investigated. The developmental rate to the blastocyst stage of NT embryos (9.9+/- 2.4% for cumulus cells and 9.8+/-1.6% for fibroblast cells) was significantly lower than that (22.9+/-3.5%) of IVF-derived embryos (P<0.01). NT blastocysts derived from either cumulus (28.9+/-11.4, n = 26) or fibroblast cells (30.2+/-9.9, n = 27) showed smaller mean nuclei numbers than IVF-derived blastocysts (38.6+/-10.4, n = 62) (P<0.05). In Experiment 3, nuclear transfer of porcine fibroblasts expressing the GFP (green fluorescent protein) gene resulted in green blastocysts without losing developmental potential. These results suggest that porcine embryos reconstructed by somatic cell nuclear transfer are capable of developing to preimplantation stage. We conclude that somatic cells expressing exogenous genes can be used as nuclei donors in the production of NT-mediated transgenic pig.  相似文献   

3.
Genetically modified animals have many poten-tial applications in basic research, human medicine and agriculture. Pronuclear DNA microinjection has been almost the only practical means of producing transgenic animals during the last 20 years, but the low efficiency (1%—5%)[1] of this method has actu-ally been the obstacle that hampered its further appli-cation in animal biotechnology. The birth of Dolly[2], the first somatically cloned animal, made it possible to produce transgenic animals b…  相似文献   

4.
Reproductive efficiency using somatic cell nuclear transfer (SCNT) technology remains suboptimal. Of the various efforts to improve the efficiency, chromatin transfer (CT) and clone-clone aggregation (NTagg) have been reported to produce live cloned animals. To better understand the molecular mechanisms of somatic cell reprogramming during SCNT and assess the various SCNT methods on the molecular level, we performed gene expression analysis on bovine blastocysts produced via standard nuclear transfer (NT), CT, NTagg, in vitro fertilization (IVF), and artificial insemination (AI), as well as on somatic donor cells, using bovine genome arrays. The expression profiles of SCNT (NT, CT, NTagg) embryos were compared with IVF and AI embryos as well as donor cells. NT and CT embryos have indistinguishable gene expression patterns. In comparison to IVF or AI embryos, the number of differentially expressed genes in NTagg embryos is significantly higher than in NT and CT embryos. Genes that were differentially expressed between all the SCNT embryos and IVF or AI embryos are identified. Compared to AI embryos, more than half of the genes found deregulated between SCNT and AI embryos appear to be the result of in vitro culture alone. The results indicate that although SCNT methods have altered differentiated somatic nuclei gene expression to more closely resemble that of embryonic nuclei, combination of insufficient reprogramming and in vitro culture condition compromise the developmental potential of SCNT embryos. This is the first set of comprehensive data for analyzing the molecular impact of various nuclear transfer methods on bovine pre-implantation embryos.  相似文献   

5.
6.
The present study examined the effect of elevated Ca(2+) concentration in fusion/activation medium on the fusion and development of fetal fibroblast nuclear transfer (NT) porcine embryos. Frozen-thawed and serum starved fetal fibroblasts were transferred into the perivitelline space of enucleated oocytes. Cell fusion and activation were induced simultaneously with electric pulses in 0.3 M mannitol-based medium containing 0.1 or 1.0 mM CaCl(2). Some fused embryos were further activated 1 hr after the fusion treatment by exposure to an electric pulse. The NT embryos were cultured in vitro for 6 days. Fusion and blastocyst formation rates were significantly (P<0.05) increased by increasing the Ca(2+) concentration from 0.1 mM (67.1 and 6.3%) to 1.0 mM (84.7 and 15.8%). However, no difference in the number of cells in blastocysts was observed between the two groups. A higher percentage of blastocyst was also observed when control oocytes were parthenogenetically activated in the presence of elevated Ca(2+) (19.3% vs. 32.4%, P<0.05). When the reconstituted oocytes were fused in the medium containing 1.0 mM CaCl(2), increasing the number of pulses from 2 to 3 or an additional activation treatment did not enhance the blastocyst formation rate or cell number in blastocysts. These results demonstrate that increasing the Ca(2+) concentration in the fusion/activation medium can enhance the fusion and blastocyst formation rates of fetal fibroblast NT porcine embryos without an additional activation treatment.  相似文献   

7.
Adult animal cloning has progressed to allow the production of offspring cloned from adult cells, however many cloned calves die prenatally or shortly after birth. This study examined the expression of three important metabolic enzymes, lactate dehydrogenase (LDH), citrate synthase, and phosphofructokinase (PFK), to determine if their detection in nuclear transfer (NT) embryos mimics that determined for in vitro produced embryos. A day 40 nuclear transfer produced fetus derived from an adult cell line was collected and fetal fibroblast cultures were established and maintained. Reconstructed NT embryos were then produced from this cell line, and RT-PCR was used to evaluate mRNA reprogramming. All three mRNAs encoding these enzymes were detected in the regenerated fetal fibroblast cell line. Detection patterns were first determined for IVF produced embryos (1-cell, 2-cell, 6-8 cell, morula, and blastocyst stages) to compare with their detection in NT embryos. PFK has three subunits: PFK-L, PFK-M, and PFK-P. PFK-L and PFK-P were not detected in bovine oocytes. PFK subunits were not detected in 6-8 cell embryos but were detected in blastocysts. Results from NT embryo RT-PCR demonstrated that PFK was not detected in 8-cell NT embryos but was detected in NT blastocysts indicating that proper nuclear reprogramming had occurred. Citrate synthase was detected in oocytes and throughout development to the blastocyst stage in both bovine IVF and NT embryos. LDH-A and LDH-B were detected in bovine oocytes and in all stages of IVF and NT embryos examined up to the blastocyst stage. A third subunit, LDH-C was not detected at the blastocyst stage in IVF or NT embryos but was detected in all earlier stages and in mature oocytes. In addition, LDH-C mRNA was detected in gonad isolated from the NT and an in vivo produced control fetus. These results indicate that the three metabolic enzymes maintain normal expression patterns and therefore must be properly reprogrammed following nuclear transfer.  相似文献   

8.
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.  相似文献   

9.
Lu F  Jiang J  Li N  Zhang S  Sun H  Luo C  Wei Y  Shi D 《Theriogenology》2011,76(5):967-974
The objective was to investigate the effect of recipient oocyte age and the interval from activation to fusion on developmental competence of buffalo nuclear transfer (NT) embryos. Buffalo oocytes matured in vitro for 22 h were enucleated by micromanipulation under the spindle view system, and a fetal fibroblast (pretreated with 0.1 μg/mL aphidicolin for 24 h, followed by culture for 48 h in 0.5% fetal bovine serum) was introduced into the enucleated oocyte, followed by electrofusion. Both oocytes and NT embryos were activated by exposure to 5 μM ionomycin for 5 min, followed by culture in 2 mM 6-dimethyl-aminopurine for 3 h. When oocytes matured in vitro for 28, 29, 30, 31, or 32 h were activated, more oocytes matured in vitro for 30 h developed into blastocysts in comparison with oocytes matured in vitro for 32 h (31.3 vs 19.9%, P < 0.05). When electrofusion was induced 27 h after the onset of oocyte maturation, the cleavage rate (78.0%) was higher than that of electrofusion induced at 28 h (67.2%, P < 0.05), and the blastocyst yield (18.1%) was higher (P < 0.05) than that of electrofusion induced at 25 or 26 h (7.4 and 8.5%, respectively). A higher proportion of NT embryos activated at 3 h after electrofusion developed to the blastocyst stage (18.6%) in comparison with NT embryos activated at 1 h (6.0%), 2 h (8.3%), or 4 h (10.6%) after fusion (P < 0.05). No recipient was pregnant 60 d after transfer of blastocysts developed from NT embryos activated at 1 h (0/8), 2 h (0/10), or 4 h (0/9) after fusion. However, 3 of 16 recipients were pregnant following transfer of blastocysts developed from the NT embryos activated at 3 h after fusion, and two of these recipients maintained pregnancy to term. We concluded that the developmental potential of buffalo NT embryos was related to recipient oocyte age and the interval from fusion to activation.  相似文献   

10.
Ongoing research to identify the most suitable type of donor cell for nuclear transfer (NT) has suggested that less differentiated stem cells may be better donors than other somatic cell types. Recently, we have reported the isolation and characterization of porcine skin-originated sphere (PSOS) stem cells from fetal skin, making it possible to test this hypothesis in a nonrodent animal model. In the present study, we have investigated and compared the feasibility and preimplantation developmental efficiency of using fetal PSOS cells and fibroblasts as nuclear-transfer donors. The majority of fetal PSOS cells are in the G1/ G0 stage of the cell cycle, which is desirable for NT. During long-term in vitro culture, fetal PSOS cells had greater genome stability, with a lower frequency of abnormal karyotypes than fetal fibroblast cells. Embryos cloned from PSOS cells showed enhanced preimplantation development compared with fibroblast cloned embryos, which is indicated by an increased rate of blastocyst development and a higher total cell number in Day 7 blastocysts. The gene expression profile of genes critical for early development from eight-cell-stage PSOS NT embryos more closely resembled the pattern observed from in vivo-produced embryos compared with that of fibroblast-cloned embryos. Cumulatively, our data suggest that fetal PSOS cells may be better donor cells for NT in the pig.  相似文献   

11.
Nuclear transfer (NT) is used to elucidate fundamental biological issues such as reversibility of cell differentiation and interactions between the cytoplasm and nucleus. To obtain an insight into interactions between the somatic cell nucleus and oocyte cytoplasm, nuclear remodeling and gene expression were compared in bovine oocytes that had received nuclei from bovine and mouse fibroblast cells. While the embryos that received nuclei from bovine fibroblast cells developed into blastocysts, those that received nuclei from mouse fibroblasts did not develop beyond the 8-cell stage. Similar nuclear remodeling procedures were observed in oocytes reconstructed with mouse and bovine fibroblast cells. Foreign centrosomes during NT were introduced into embryos reconstructed with both fibroblast cell types. A number of housekeeping mouse genes (hsp70, bax, and glt-1) were abnormally expressed in embryos that had received nuclei from mouse fibroblast cells. However, development-related genes, such as Oct-4 and E-cad, were not expressed. The results collectively suggest that the bovine oocyte cytoplasm supports nuclear remodeling, but not reprogramming of mouse fibroblast cells.  相似文献   

12.
This paper methodologically compares the electro-fusion (EF) and intracytoplasmic injection (ICI) methods, as well as simultaneous fusion/activation (SA) and delayed activation (DA), in somatic nuclear transfer in pigs using fetal fibroblast cells. Comparison of the remodeling pattern of donor nuclei after nuclear transfer by ICI or EF showed that a high rate (80-100%) of premature chromosome condensation occurred in both cases whether or not Ca2+ was present in the fusion medium. Formation of pseudo-pronuclei tended to be lower for nuclear transfer performed by the ICI method (65% vs. 85-97%, p < 0.05). In vitro developmental potential of nuclear transfer embryos reconstructed with IVM oocytes using the EF method was higher than that of those produced by the ICI method (blastocyst formation: 19 vs. 5%, p < 0.05), and it was not improved using in vivo-matured oocytes as recipient cytoplasts. Embryos produced using SA protocol developed to blastocysts with the same degree of efficiency as those produced under the DA protocol (11 vs. 12%). Use of the EF method in conjunction with SA was shown to be an efficient method for producing cloned pigs based on producing a cloned normal pig fetus. However, subtle differences in nuclear remodeling patterns between the SA and DA protocols may imply variations in their nuclear reprogramming efficiency.  相似文献   

13.
Hill J  Winger Q  Jones K  Keller D  King WA  Westhusin M 《Cloning》1999,1(4):201-208
Two experiments, one comparing nuclear transfer (NT) embryo activation compounds, the other donor cell treatments, were conducted with a goal of identifying factors that improve the in vitro development of cloned bovine embryos. In experiment 1, 539 NT embryos were produced by combining serum starved bovine fetal fibroblasts with enucleated in vitro matured oocytes, activated with ionomycin, then randomly allocated to be incubated for 4 hours in either Butyrolactone-I (BL-I) or 6-dimethylaminopurine (DMAP). There was no significant difference in development to blastocyst or compact morula of fused embryos at Day 6.5 between BL-I and DMAP activated embryos (22.4% vs. 20.2%; p = 0.18). Karyotyping of 20 blastocysts and compact morula from each group determined that 65% of BL1 and 63% of DMAP embryos were diploid with the remainder mixoploid (2n + 4n). In Experiment 2, the development of 389 NT embryos reconstructed from either serum starved or serum fed fetal fibroblasts was assessed. More Day 7 blastocysts and compact morula developed in the serum starved group (34.5% vs. 18.8%; p = 0.008). To verify the viability of BL-I activated embryos, 10 blastocytes from experiment 2 were transferred into 4 recipient cows. Two morphologically normal fetuses, genetically identical to the original fetal cell line, were surgically recovered at day 45 of gestation. In summary, serum starvation of bovine fetal fibroblasts prior to NT significantly improved development to blastocyst. Additionally, we have shown that BL-I is a novel alternative compound for use in combination with ionomycin to activate NT embryos.  相似文献   

14.
猪体细胞核移植重构胚的体外发育(英文)   总被引:2,自引:0,他引:2  
以卵丘细胞为核供体细胞组成重构胚 ,卵裂率达到 5 6.7% ,发育至桑椹胚率达到1 1 .7% ,囊胚率为 6.7% ,显著高于成纤维细胞重构胚 (P <0 .0 5 )。本文还研究了卵母细胞的采集方法、激活程序和卵龄对卵丘细胞核移植重构胚体外发育的影响。以血清饥饿法将卵丘细胞诱导至G0 G1 期 ,抽吸法 解剖法采集卵母细胞 ,体外培养 3 3~ 44h ,将卵丘细胞放至去核卵母细胞的卵周隙中 ,重构胚以钙离子载体A2 3 81 7或电脉冲结合 6 DMAP激活处理 ,体外培养 6d。研究表明 ,卵母细胞采集方法、激活液中细胞松弛素 (CB)、激活程序并不影响重构胚的发育 (以卵龄 44h的卵母细胞为受体 ) ;而以电脉冲结合 6 DMAP激活处理能提高重构胚发育能力 (以卵龄 3 3h的卵母细胞为受体 ) (P <0 .0 5 )。本研究显示 ,以电脉冲结合 6 DMAP激活卵丘细胞重构胚 ,体外能发育至囊胚  相似文献   

15.
Development of interspecies cloned embryos in yak and dog   总被引:4,自引:0,他引:4  
Interspecies nuclear transfer (NT) could be an alternative to replicate animals when supply of recipient oocytes is limited or in vitro embryo production systems are incomplete. In the present study, embryonic development was assessed following interspecies NT of donor cumulus cells derived from yak and dog into the recipient ooplasm of domestic cow. The percentages of fusion and subsequent embryo development to the eight-cell stage of interspecies NT embryos were comparable to those of intraspecies NT embryos (cow-cow NT embryos). The percentage of development to blastocysts was significantly lower (p < 0.05) in yak-cow NT embryos than that in cow-cow NT embryos (10.9% vs. 39.8%). In dog-cow NT embryos, only one embryo (0.4%) developed to the blastocyst stage. These results indicate that interspecies NT embryos possess equally developmental competence to the eight-cell stage as intraspecies NT embryos, but the development to blastocysts is very low when dog somatic cells are used as the donor nuclei.  相似文献   

16.
Tools and methods for analyzing differences in embryos resulting from somatic cell nuclear transfer (NT) in comparison to those derived from normal fertilization are needed to define better the nature of the nuclear reprogramming that occurs after NT. To this end, a collection of bovine blastocyst-derived cell lines was created. In vitro expanded or hatched blastocysts, used as primary culture tissue, were from NT; in vitro maturation, fertilization, and culture (IVF); or parthenogenetic (P) activation. Also, five in vivo-fertilized and developed blastocysts were collected by uterine flushing on the eighth d postfertilization. Whole blastocysts were physically attached to STO feeder layers to initiate all of the cell lines generated. The majority of the cell lines in the collection are trophectoderm, 38 NT-derived, 6 in vivo-derived, 20 IVF-derived, and 13 P-derived. Trophectoderm identity was ascertained by morphology and, in many cases, interferon-tau production. Several visceral endoderm cell lines and putative parietal endoderm cell lines were also established. At approximately 5% efficiency, epiblast masses from NT and IVF blastocysts survived and were isolated in culture. Two epiblast masses were also isolated from P blastocysts. Spontaneous differentiation from the epiblast outgrowths resulted in the establishment of fibroblast cell lines. The use of the trophectoderm cell lines as a comparative in vitro model of bovine trophectoderm and placental function is discussed in relation to NT reprogramming.  相似文献   

17.
This study investigated the basic conditions required for the production of horse embryos by the transfer of the nuclei of fetal and adult fibroblast cells to enucleated oocytes. Cumulus-oocyte complexes were recovered from abattoir ovaries and matured in vitro in groups of 20-30 for 28-30 h in tissue culture medium 199 containing 20% v:v fetal bovine serum in coculture with equine oviduct epithelial cells. Fetal fibroblast cells (FFC) were derived from a 32-day-old Thoroughbred x Pony fetus, and adult skin fibroblast cells (SFC) were obtained from subdermal biopsies recovered from a 4-yr-old female Pony. The rates of fusion between the recipient cytoplasm with either FFC or SFC were significantly greater when the cells were treated with a combination of direct current (DC) pulses and Sendai virus rather than with DC pulses alone (81%-82% vs. 49%-57%, P < 0.05). There were no differences in the rates of nuclear reprogramming between FFC and SFC (88% vs. 84%), but the rate of cleavage of the resulting embryos to the 2-cell stage was higher when FFC were used (53%) than when SFC were used (35%). Blastocysts were obtained from oocytes reconstructed with both types of donor cells and after culture in vitro for 6-7 days, but the overall proportion of blastocysts produced was very low in both cases (FFC, 4%; SFC, 7%). These results demonstrate a very limited potential for in vitro development of horse embryos after nuclear reprogramming following the transfer of nuclei from either fetal or adult fibroblasts into recipient enucleated oocytes.  相似文献   

18.
Premature chromosome condensation (PCC) was believed to promote nuclear reprogramming and to facilitate cloning by somatic cell nuclear transfer (NT) in mammalian species. However, it is still uncertain whether PCC is necessary for the successful reprogramming of an introduced donor nucleus in cattle. In the present study, fused NT embryos were subjected to immediate activation (IA, simultaneous fusion and activation), delayed activation (DA, activation applied 4 h postfusion), and IA with aged oocytes (IAA, activation at the same oocyte age as group DA). The morphologic changes, such as nuclear swelling, the occurrence of PCC, and microtubule/aster formation, were analyzed in detail by laser-scanning confocal microscopy. When embryos were subjected to IA in both IA and IAA groups, the introduced nucleus gradually became swollen, and a pronuclear-like structure formed within the oocyte, but PCC was not observed. In contrast, delaying embryo activation resulted in 46.5%-91.2% of NT embryos exhibiting PCC. This PCC was observed beginning at 4 h postcell fusion and was shown as one, two, or multiple chromosomal complexes. Subsequently, a diversity of pronuclear-like structures existed in NT embryos, characterized as single, double, and multiple nuclei. In the oocytes exhibiting PCC, the assembled spindle structure was observed to be an interactive mass, closely associated with condensed chromosomes, but no aster had formed. Regardless of whether they were subjected to IA, IAA, or DA treatments, if the oocytes contained pronuclear-like structures, either one or two asters were observed in proximity to the nuclei. A significantly higher rate of development to blastocysts was achieved in embryos that were immediately activated (IA, 59.1%; IAA, 40.7%) than in those for which activation was delayed (14.2%). The development rate was higher in group IA than in group IAA, but it was not significant (P = 0.089). Following embryo transfer, there was no statistically significant difference in the pregnancy rates (Day 70) between two of the groups (group IA, 11.7%, n = 94 vs. group DA, 12.3%, n = 130; P > 0.05) or live term development (group IA, 4.3% vs. group DA, 4.6%; P > 0.05). Our study has demonstrated that the IA of bovine NT embryos results in embryos with increased competence for preimplantational development. Moreover, PCC was shown to be unnecessary for the reprogramming of a transplanted somatic genome in a cattle oocyte.  相似文献   

19.
20.
Incomplete epigenetic reprogramming is one of the major factors affecting the development of embryos cloned by somatic cell nuclear transfer (SCNT). Histone 3 lysine 9 (H3K9) trimethylation has been identified as a key barrier to efficient reprogramming by SCNT. The aim of this study was to explore a method of downregulating H3K9me3 levels in donor cells by using histone lysine demethylase (KDM) protein. When sheep fetal fibroblast cells were treated with recombinant human KDM4D protein (rhKDM4D), the levels of H3K9 trimethylation and dimethylation were both significantly decreased. After SCNT, rhKDM4D-treated donor cells supported significantly higher percentage of cloned embryos developing into blastocysts as compared to non-treated control cells. Moreover, the blastocyst quality was also improved by rhKDM4D treatment of donor cells, as assessed by the total cell number in blastocysts and the expression of developmental genes including SOX2, NANOG and CDX2. These results indicate that treatment of donor cells with recombinant KDM4D protein can downregulate the levels of H3K9 trimethylation and dimethylation and improve the developmental competence of SCNT embryos. This strategy may be convenient to be used in KDM4-assisted SCNT procedure for improving the efficiency of cloning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号