首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
To clone a pig from somatic cells, we first validated an electrical activation method for use on ovulated oocytes. We then evaluated delayed versus simultaneous activation (DA vs. SA) strategies, the use of 2 nuclear donor cells, and the use of cytoskeletal inhibitors during nuclear transfer. Using enucleated ovulated oocytes as cytoplasts for fetal fibroblast nuclei and transferring cloned embryos into a recipient within 2 h of activation, a 2-h delay between electrical fusion and activation yielded blastocysts more reliably and with a higher nuclear count than did SA. Comparable rates of development using DA were obtained following culture of embryos cloned from ovulated or in vitro-matured cytoplasts and fibroblast or cumulus nuclei. Treatment of cloned embryos with cytochalasin B (CB) postfusion and for 6 h after DA had no impact on blastocyst development as compared with CB treatment postfusion only. Inclusion of a microtubule inhibitor such as nocodozole with CB before and after DA improved nuclear retention and favored the formation of single pronuclei in experiments using a membrane dye to reliably monitor fusion. However, no improvement in blastocyst development was observed. Using fetal fibroblasts as nuclear donor cells, a live cloned piglet was produced in a pregnancy that was maintained by cotransfer of parthenogenetic embryos.  相似文献   

2.
The present paper describes production of cloned pigs from fibroblast cells of transgenic pigs expressing human decay accelerating factor (DAF, CD55) and N-acetylglucosaminyltransferase III (GnT-III) that remodels sugar-chain biosynthesis. Two nuclear transfer protocols were used: a two-step activation (TA) method and a delayed activation (DA) method. Enucleated in vitro-matured oocytes and donor cells were electrically fused in a calcium-containing medium by TA method or in a calcium-free medium by DA method, followed by electrical activation 1-1.5 h later, respectively. In vitro blastocyst formation rates of nuclear transferred embryos reconstructed by TA and DA method were 8% and 14%, respectively. As a result of embryo transfer of the reconstructed embryos made by each method into recipient pigs, both gave rise to cloned piglets. These cloned pigs expressed transgene as much as their nuclear donor cells. In conclusions, (1) pig cloning can be carried out by TA or DA nuclear transfer methods, (2) expression of transgenes can be maintained to cloned pigs from the nuclear donor cells derived from transgenic animals.  相似文献   

3.
We examined the effects of the source of recipient oocytes and timing of fusion and activation on the development competence of bovine nuclear transferred (NT) embryos derived from fresh cumulus cells isolated immediately after collection by ovum pickup (OPU). As recipient cytoplasts, we used in vivo-matured oocytes collected from hormone-treated heifers by OPU, or in vitro-matured oocytes from slaughterhouse-derived ovaries. NT embryos were chemically activated immediately (simultaneous fusion and activation, FA) or 2 h (delayed activation, DA) after fusion. When in vitro-matured oocytes were used as recipient cytoplasts, the development rate to the blastocyst stage of NT embryos produced by the DA method (23%) tended to be higher than those by the FA method (15%), but the difference was not significant. NT embryos derived from in vivo-matured cytoplasts have a high blastocyst yield (46%). Pregnancy rate at day 35 did not differ with the timing of fusion and activation (FA vs. DA; 50% vs. 44%) or oocyte source (in vivo- vs. in vitro-matured; 50% vs. 44%). Subsequently, the high fetal losses (88% of pregnancies) were observed with in vitro-matured cytoplasts, whereas no abortions were observed in NT fetuses from in vivo-matured cytoplasts. A total of three embryos derived from fresh cumulus cells developed to term. However, all three cloned calves were stillborn. These results indicate that improvement of development competence after NT is possible by using in vivo-matured oocytes as recipient cytoplasts in bovine NT.  相似文献   

4.
Production of cloned pigs by whole-cell intracytoplasmic microinjection   总被引:20,自引:0,他引:20  
Cloning by somatic cell nuclear transfer has been successfully achieved by both fusing of a donor cell with and injecting an isolated donor cell nucleus into an enucleated oocyte. However, each of the above methods involves extended manipulation of either the oocytes (fusion) or the donor cells (nucleus isolation). Additionally, cloning efficiency can be reduced by low fusion rate of the cell fusion method, and specialized micromanipulation equipment and exacting nucleus isolation techniques are required for the nucleus injection method. Here we report a whole-cell injection technique for nuclear transfer in pigs and the production of cloned piglets with comparable, if not higher, efficiency than the other two nuclear transfer procedures. First, we tested the feasibility of this technique with three types of frequently used donor cells (cumulus, mural granulosa, and fibroblasts) and obtained the optimal nuclear reprogramming conditions for these cells. We further improved our protocol by avoiding ultraviolet exposure during enucleation and achieved a 37% blastocyst rate. We then conducted whole-cell injection using skin fibroblasts from the ear of a sow transgenic for two genes, the porcine lactoferrin and the human factor IX, and produced four live-born cloned transgenic piglets from three recipients. The present study demonstrated the applicability of producing normal, cloned piglets by the simple and less labor-intensive whole-cell intracytoplasmic injection.  相似文献   

5.
We compared developmental potential of somatic cell nuclear transfer (NT) embryos and postnatal survivability of cloned calves produced by two different fusion and activation protocols. As donor cells for NT, bovine cumulus cell-derived cultured cells of passage 5 were used following culture in serum-starved medium for 5-7 days. Enucleated oocytes were fused with donor cells at 21 or 24 hr post maturation. NT embryos fused at 21 hr were activated chemically 3 hr after fusion (DA group) and embryos fused at 24 hr were activated chemically immediately after fusion (FA group). Chemical activation was accomplished by calcium ionophore for 5 min and cytochalasin D + cycloheximide for 1 hr then cycloheximide alone for 4 hr. After in vitro culture in IVD101 medium for 7 days, embryo transfer was performed. Fusion rates were 86 and 84% in the DA and FA groups, respectively. Developmental rate to the blastocyst stage of NT embryos in the DA group was higher than in the FA group (42% vs. 28%). Pregnancy rate did not differ significantly between the DA and FA groups (11/13 and 5/7 at day 35), and 13 cloned calves (including 1 set of twins from a single embryo transfer) were born. High rates of postnatal mortality were observed in both groups. These results suggest that the DA method improves in vitro developmental potential of NT embryos, but the timing of fusion and chemical activation does not affect the pregnancy rate and the survivability of cloned calves.  相似文献   

6.
This study was conducted to evaluate the nuclear remodeling patterns and the developmental potential of porcine fetal fibroblast nuclear transfer embryos (NTs) following the maturational age of recipient oocytes and activation conditions. Donor cells were transferred into the enucleated oocytes that were matured for 36 or 44h. Electrofused embryos were cultured in PZM-3 for 6 days without activation treatment (EF group). Some of these embryos were additionally activated by electric stimulus (ES; EF+ES group) or a combination of ES and DMAP (EF+ES+D group) before culture. The reconstituted embryos were fixed 2.5h after fusion to evaluate the nuclear remodeling patterns. The nuclear remodeling pattern of NTs reconstituted with 44 h-matured recipients showed a tendency to form a pronucleus-like structure, while that of NTs reconstituted with 36 h-matured recipients showed a tendency to undergo a premature chromosome condensation (PCC) and form one set of chromatin clump. In EF+ES+D group, blastocyst development was significantly increased regardless of maturational age of recipient oocytes (P<0.05). The result indicates that additional activation treatment is necessary to induce the activation of embryos reconstituted with 36 h-matured recipients, and treatment with the combination of electrical stimuli and DMAP could enhance the blastocyst formation rate of porcine NTs reconstituted with both 36 h- and 44 h-matured recipient oocytes.  相似文献   

7.
自从1997年克隆羊"Dolly"[1]出生以来,体细胞核移植技术得到广泛应用,已经有十余种克隆哺乳动物出生,但克隆效率仍然很低,核移植方法的不够完善是其重要原因之一.  相似文献   

8.
The restricted supply of oocytes in the domestic dog limits the development of reproductive biotechnologies in this species. Inter-species somatic cell nuclear transfer could be an alternative for cloning animals whose oocytes are difficult to obtain. In this study, the possibility of cloning dog embryos using pig oocytes was investigated by evaluating nuclear remodeling. Chromatin remodeling, assessed by premature chromosome condensation, pseudo-pronuclei formation, DNA methylation and histone acetylation, along with the developmental ability was compared between intra- and inter-species cloned embryos. The incidence of premature chromosome condensation was significantly higher in intra-species cloned embryos relative to inter-species cloned embryos (87.2% vs. 61.7%; P<0.05), but comparable pseudo-pronuclei formation was observed in both (85.3% vs. 75.8%). None of the inter-species cloned embryos developed beyond the 8-cell stage while 18.3% of intra-species cloned embryos developed to the blastocyst stage. The relative level of both DNA methylation and histone acetylation was similar between intra- and inter-species cloned embryos at all times examined. These results suggest that although partial chromatin remodeling occurs, further investigation is needed to be able to use pig oocytes as recipient oocytes in dog cloning.  相似文献   

9.
To date, the efficiency of pig cloning by nuclear transfer of somatic cell nuclei has been extremely low, with less than 1% of transferred embryos surviving to term. Even the utilization of complex procedures such as two rounds of nuclear transfer has not resulted in greater overall efficiencies. As a result, the applicability of the technology for the generation of transgenic and cloned animals has not moved forward rapidly. We report here a simple nuclear transfer protocol, utilizing commercially available in vitro-matured oocytes, that results in greater than 5% overall cloning efficiency. Of five recipients receiving nuclear transfer embryos produced with a fetal fibroblast cell line as nuclear donor, all five established pregnancies by day 28 (100%), and 4/5 (80%) went to term. Efficiencies for each transfer were 7% (9 piglets/128 doublets transferred), 5% (5/100), 12% (7/59), and 6.6% (7/106). The overall efficiency in all recipients was 5.5% and in pregnant recipients 7.7%, with a total of 28 cloned piglets produced. With the average fusion rate being 58%, the percentage of fused doublets producing a live piglet approached 12%. The method described here can be undertaken by a single micromanipulator at a reasonable cost, and should facilitate the broad utilization of porcine cloning technology in transgenic and nontransgenic applications.  相似文献   

10.
兔体细胞核移植的初步研究   总被引:4,自引:0,他引:4  
实验以兔胎儿成纤维细胞为核供体,对兔体细胞核移植技术的融合,激活和发育等环节进行了初步研究。实验通过比较不同电场强度对兔2细胞胚胎卵裂球融合以及卵母细胞激活的影响,证实200和260V/mm的电场强度可有效地诱导2细胞胚胎的融合和兔卵母细胞的孤雌激活。然后将200和260V/mm电场强度用于体细胞核移植,融合率分别为44.4%和48.4%,卵裂率分别为58.8%和53.8%,桑椹胚/囊胚发育率分别为5.9%和5.5%。但112枚核移植胚胎移植到5只受体后没有幼子出生。结果表明,实验中所建立的程序至少可以支持兔体细胞克隆胚胎的早期发育。  相似文献   

11.
Cloning of bovine embryos by multiple nuclear transfer   总被引:3,自引:0,他引:3  
The in vitro development of multiple generation bovine nuclear transferred embryos to blastocysts and their survival ability after freezing and thawing were examined. Parent donor embryos which had 20 to 50 cells were recovered from superovulated cows. Follicular oocytes matured in vitro were used as recipient oocytes. The recipient oocytes enucleated at 22 to 24 h after the onset of maturation were preactivated at 33 h. Enucleated oocytes with a donor blastomere were fused 9 h after activation by an electric stimulus and the fused oocytes were cultured in vitro (first generation). Reconstituted oocytes that had developed to the 8- to 16-cell stage 3 to 4 d after fusion were used as donor embryos for the next generation. Recloning procedures were performed twice (second and third generations). The proportion of recipient oocytes successfully fused with a blastomere increased with the cycle of nuclear transfer. Eighty to 86% of fused oocytes developed to the 2-cell stage and there was no significant difference with the generation. The proportion of reconstituted embryos receiving blastomeres derived from first generation embryos had higher developmental ability in vitro, than those derived from other generations (43 vs 31% for 8 to 16-cell stage, 37 vs 20 and 21% for blastocyst stage). The number of cloned blastocysts increased with repeated nuclear transfer (once: 6.2 +/- 4.3, twice: 19.8 +/- 9.2 and three times: 30.0 +/- 14.7) but varied greatly with each parent donor embryo. The in vitro viability of cloned blastocysts after freezing and thawing (59%) was low but not significantly different from that obtained for in vitro fertilized blastocysts (72%). After transfer of either fresh or frozen-thawed cloned blastocysts to 21 recipients, 10 of them were pregnant on Day 60. Four and 3 offspring were produced from 20 fresh and 14 frozen-thawed blastocysts,respectively.  相似文献   

12.
13.
The knowledge of oocyte activation and somatic cell nuclear transfer in the swamp buffalo (Buballus bubalis) is extremely rare. The objectives of this study were the following: (1) to investigate the various activation treatments on the parthenogenetic development of buffalo oocytes, (2) to examine the events of nuclear remodeling and in the in vitro development of cloned buffalo embryos reconstructed with serum fed or starved fetal fibroblasts, and (3) to investigate the in vivo development of cloned embryos derived from serum fed or starved cells after transfer into the recipients. The rates of cleavage and blastocyst development were found to be significantly higher (P < 0.05) when the oocytes were activated by the combination treatment of calcium ionophore (A23187) or ethanol followed by 6-DMAP than those activated by electrical pulses and 6-DMAP or other single treatments. Flow cytometric analysis revealed that the percentage in the G0/G1 phase in serum starved cells was significantly (P < 0.05) higher than that in serum fed cells (88.8 +/- 6.2 vs. 68.2 +/- 2.6). At 1 h post fusion (hpf), most of the transferred nuclei (71%) from serum fed cells did not change in size, and the nuclear envelope remained intact, whereas 29% underwent NEBD and PCC. When serum starved cells were used, 83% of the transferred nuclei underwent NEBD and PCC whereas 17% remained intact. The nuclear swelling and pronucleus (PN) formation were observed at 2-4 and 12 h post activation (hpa), respectively. The remodeled nuclei underwent mitotic division and developed to the 2-cell stage within 18-24 hpa. Fifty-five percent of oocytes reconstructed with serum fed cells were 2PN and 45% were 1PN, whereas 79% of the embryos reconstructed from starved cells were 1PN and 21% were 2PN. The percentage of blastocyst development of the embryos derived from starved cells was higher than that from the serum fed cells (35% vs. 21%, P < 0.05). Pregnancy was detected after the transfer of cloned blastocysts into the recipients but no recipients supported the development to term. The results of this work can be used to establish effective activation protocols for buffalo oocytes which can be used during nuclear transfer experiments.  相似文献   

14.
Activation of bovine oocytes by experimental procedures that closely mimic normal fertilization is essential both for intracytoplasmic sperm injection and for nuclear transfer (NT). Therefore, with the goal of producing haploid activated oocytes, we evaluated whether butyrolactone I and bohemine, either alone or in combination with ionomycin, are able to activate young matured mammalian oocytes. Furthermore, the effect on the patterns of DNA synthesis after pronuclear formation as well as changes in histone H1 kinase and MAP kinase activities during the process of activation were studied. Our results with bohemine show that the specific inhibition of cyclin-dependent kinases (CDKs) in metaphase II bovine oocytes induces parthenogenetic activation in a dose dependent manner (25, 50, and 100 microM, respectively), either alone (3%, 30%, and 50%) or in combination with ionomycin (30%, 70%, and 87.5%). The effect of two activation protocols on nuclear remodeling, DNA synthesis during the first cell cycle, chromosome segregation after first mitosis, and development to blastocyst of embryos produced by somatic nuclear transfer were studied. Pronuclear formation was significantly higher when activation lasted 5 h compared to 3 h for both ethanol-cycloheximide and ionomycin-bohemine treatment. Initiation of DNA synthesis was delayed in ethanol-cycloheximide group, however, after 12-h labeling 100% of embryos synthesized DNA in both groups. Analysis of two-cell embryos with DNA probes for chromosome 6, 7, and 15 by fluorescence in situ hybridization showed that at least 50% of NT embryos were of normal ploidy, independent of the activation protocol.  相似文献   

15.
《Reproductive biology》2014,14(2):128-139
A novel method termed the biological transcomplementary activation (B-TCA) has been recently utilized for the stimulation of porcine oocytes reconstituted by somatic cell nuclear transfer (SCNT). The use of cytosolic components originating from fertilized (FE) rabbit zygotes as the stimuli for the B-TCA of SCNT-derived pig oocytes appeared to be a highly efficient strategy applied to promote the in vitro development of cloned embryos, leading to a significant improvement in the blastocyst yield (43.6%) compared to the yields achieved using the standard protocol of simultaneous fusion and electrical activation (SF-EA; [31.3%]) or the protocol of delayed electrical activation (D-EA) independent of extracellular Ca2+ ions (0%). The FE rabbit zygote cytoplast-mediated B-TCA resulted in the increased blastocyst formation rate of porcine cloned embryos as compared to the B-TCA triggered by either cytoplasts isolated from pig parthenogenotes (PAs; [27.8%]) or rabbit PA-descended cytoplasts (0%). A considerably lower percentage of blastocysts containing apoptotic and/or necrotic (annexin V-eGFP-positive) cells were obtained from the SCNT-derived oocytes stimulated by the FE rabbit zygote cytoplast-based B-TCA (22.2%) compared to those stimulated using the SF-EA protocol (35.1%). In contrast to the B-TCA induced by FE rabbit zygote cytoplasts, apoptosis/necrosis incidence decreased totally among the cloned pig blastocysts that developed from reconstituted oocytes undergoing the porcine PA cytoplast-evoked B-TCA. In conclusion, the FE rabbit zygote cytoplast-mediated B-TCA turned out to be a relatively effective strategy for the in vitro production of porcine blastocyst clones of higher quality compared to those created using the standard SF-EA approach.  相似文献   

16.
We have reported relatively efficient methods for somatic cell nuclear transfer and for knocking out the alpha(1,3)-galactosyltransferase (alpha1,3-GT) gene in porcine fetal fibroblasts using a nonisogenic promoterless construct approach. Here we report the production of alpha1,3-GT gene knockout pigs using these procedures. Seven alpha1,3-GT gene knockout cell clones were identified by long-range PCR from 108 neomycin resistant (neo(R)) colonies, giving a 6.5% targeting efficiency. Three cell clones were used for nuclear transfer. Nuclear transfer was performed using a fusion before activation protocol using in vitro-matured adult oocytes. Between 51 and 110 fused couplets were transferred to 10 recipients synchronized 1 day behind the embryos. Parturition was induced on day 115, and piglets were delivered by caesarean section. Four recipients gave birth to a total of 18 live piglets. All pigs were female, and all three clones resulted in the birth of live pigs. alpha1,3-GT gene knockout pigs were identified by long-range PCR and confirmed by Southern blot analysis. The efficiency (embryos transferred/piglets born) of our cloning protocol was 1.9% for all transfers and 4.6% for animals that gave birth.  相似文献   

17.
Premature chromosome condensation (PCC) was believed to promote nuclear reprogramming and to facilitate cloning by somatic cell nuclear transfer (NT) in mammalian species. However, it is still uncertain whether PCC is necessary for the successful reprogramming of an introduced donor nucleus in cattle. In the present study, fused NT embryos were subjected to immediate activation (IA, simultaneous fusion and activation), delayed activation (DA, activation applied 4 h postfusion), and IA with aged oocytes (IAA, activation at the same oocyte age as group DA). The morphologic changes, such as nuclear swelling, the occurrence of PCC, and microtubule/aster formation, were analyzed in detail by laser-scanning confocal microscopy. When embryos were subjected to IA in both IA and IAA groups, the introduced nucleus gradually became swollen, and a pronuclear-like structure formed within the oocyte, but PCC was not observed. In contrast, delaying embryo activation resulted in 46.5%-91.2% of NT embryos exhibiting PCC. This PCC was observed beginning at 4 h postcell fusion and was shown as one, two, or multiple chromosomal complexes. Subsequently, a diversity of pronuclear-like structures existed in NT embryos, characterized as single, double, and multiple nuclei. In the oocytes exhibiting PCC, the assembled spindle structure was observed to be an interactive mass, closely associated with condensed chromosomes, but no aster had formed. Regardless of whether they were subjected to IA, IAA, or DA treatments, if the oocytes contained pronuclear-like structures, either one or two asters were observed in proximity to the nuclei. A significantly higher rate of development to blastocysts was achieved in embryos that were immediately activated (IA, 59.1%; IAA, 40.7%) than in those for which activation was delayed (14.2%). The development rate was higher in group IA than in group IAA, but it was not significant (P = 0.089). Following embryo transfer, there was no statistically significant difference in the pregnancy rates (Day 70) between two of the groups (group IA, 11.7%, n = 94 vs. group DA, 12.3%, n = 130; P > 0.05) or live term development (group IA, 4.3% vs. group DA, 4.6%; P > 0.05). Our study has demonstrated that the IA of bovine NT embryos results in embryos with increased competence for preimplantational development. Moreover, PCC was shown to be unnecessary for the reprogramming of a transplanted somatic genome in a cattle oocyte.  相似文献   

18.
Effect of telophase enucleation on bovine somatic nuclear transfer   总被引:5,自引:0,他引:5  
Liu JL  Wang MK  Sun QY  Xu Z  Chen DY 《Theriogenology》2000,54(6):989-998
Telophase enucleation has been proven to be an efficient method for preparing recipient cytoplasts in bovine embryonic nuclear transfer (2, 11). This research was designed to study in vitro development of bovine oocytes containing transferred somatic cell nuclei, reconstructed by using enucleated in vitro-matured oocytes 32 h of age at telophase II stage as recipient cytoplasts, compared with those 24 h of age at metaphase II stage. Two protocols for donor cell injection were adopted, i.e., subzonal injection (SUZI) and intracytoplasmic injection (ICI). Bovine oviduct epithelial cells (BOECs) and bovine cumulus cells (BCCs) from an adult cow were used as nuclear donors for these experiments. In SUZI groups, the fusion rate of donor cells, both BOECs and BCCs, with MII enucleated oocytes were higher than those with TII enucleated oocytes (54% vs. 41% and 53% vs. 39%, respectively; P<0.05), but the development rates to morula plus blastocyst stage in MII groups were lower than those in TII groups (22% vs. 39% and 21% vs. 41%, respectively; P<0.05). In ICI groups, about 26% of enucleated MII oocytes injected with BOECs or BCCs cleaved and only small parts of them developed to blastocyst stage (4% and 3%, respectively; P>0.05). When BOECs or BCCs were intracytoplasmically injected into oocytes enucleated at TII stage, no blastocyst was formed in either donor cell group and no cleavage occurred in BOEC group. Our data demonstrated that telophase enucleation is beneficial to early embryo development when bovine somatic nuclei are transferred by subzonal injection. However, it is harmful when donor cells are directly injected into the cytoplast of the enucleated oocytes.  相似文献   

19.
We investigated the use of direct nuclear injection using the Piezo drill and activation by injection of stallion sperm cytosolic extract for production of cloned equine embryos. When metaphase II horse oocytes were injected with either of two dosages of sperm extract and cultured 20 h, similar activation rates (88% vs. 90%) and cleavage rates (49% vs. 46%) were obtained. The successful reconstruction rate of horse oocytes with horse somatic cell donor nuclei after direct injection using the Piezo drill was 82%. Four dosages of sperm extract (containing 59, 176, 293, or 1375 microg/ml protein) and two activation times (1.5-2 vs. 8-10 h after nuclear transfer) were examined. Cleavage and activation (pseudopronucleus formation) rates of oocytes injected with sperm extract containing 59 microg/ml protein were significantly (P < 0.05) lower than any other dosage. The percentage of embryos cleaving with normal nuclei in oocytes injected with the 1375 microg/ml preparation 1.5-2 h after donor injection was significantly (P < 0.05) higher than that of the 293 microg/ml preparation 8-10 h after donor injection (22 vs. 6%). Embryos developed to a maximum of 10 nuclei. Interspecies nuclear transfer was performed by direct injection of horse nuclei into enucleated bovine oocytes, followed by chemical activation. This resulted in 81% reconstruction (successful injection of the donor cell), 88% cleavage, and 73% cleavage with normal nuclei. These results indicate that direct nuclear injection using the Piezo drill is an efficient method for nuclear transfer in horse and cattle oocytes and that sperm extract can efficiently activate horse oocytes both parthenogenetically and after nuclear transfer  相似文献   

20.
As shown by the birth of the first cloned dog ‘Snuppy', a protocol to produce viable cloned dogs has been reported. In order to evaluate optimum fusion conditions for improving dog cloning efficiency, in vivo matured oocytes were reconstructed with adult somatic cells from a female Pekingese using different fusion conditions. Fusion with needle vs chamber methods, and with low vs high pulse strength was compared by evaluating fusion rate and in vivo development of canine cloned embryos. The fusion rates in the high voltage groups were significantly higher than in the low voltage groups regardless of fusion method (83.5 vs 66.1% for the needle fusion method, 67.4 vs 37.9% for the fusion chamber method). After embryo transfer, one each pregnancy was detected after using the needle fusion method with high and low voltage and in the chamber fusion method with high voltage, whereas no pregnancy was detected using the chamber method with low voltage. However, only the pregnancy from the needle fusion method with high voltage was maintained to term and one healthy puppy was delivered. The results of the present study demonstrated that two DC pulses of 3.8 to 4.0 kV/cm for 15 μsec using the needle fusion method were the most effective method for the production of cloned dogs under the conditions of this experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号