首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lu F  Shi D  Wei J  Yang S  Wei Y 《Theriogenology》2005,64(6):1309-1319
The objective of this study was to explore the feasibility of employing adult fibroblasts as donor cells in interspecies nuclear transfer (NT) between buffaloes and cattle. Buffalo and bovine oocytes matured in vitro for 22 h were enucleated by micromanipulation using the Spindle View system. An ear fibroblast, pretreated with 0.1 microg/mL aphidicolin for 24 h, followed by culture for 2-9 days in Dulbecco's Modified Eagle's Media+0.5% fetal bovine serum, was introduced into the cytoplast by microinjection. Reconstructed oocytes were activated by exposure to 5 microM ionomycin for 5 min and 2 mM 6-dimethylaminopurine for 3 h. When buffalo adult fibroblasts were used as donor cells, there were no differences (P < 0.75) in the cleavage rate (66.2% versus 64.0%) between bovine and buffalo recipient oocytes, but more embryos derived from bovine cytoplasts developed to blastocysts than from buffalo cytoplasts (13.3% versus 3.0%, P < 0.05). When bovine adult fibroblasts were used as donor nuclei, both cleavage rate (45.3%) and blastocyst yield (4.5%) of NT embryos derived from buffalo cytoplasts were lower than those of NT embryos derived from bovine cytoplasts (65.5 and 11.9%, P < 0.05). The proportion of parthenogenetic buffalo (29.1%) or bovine (35.6%) oocytes developing to blastocysts was higher than those of NT embryos (P < 0.01). Interspecies NT embryos were derived from the donor cells and 55.0-61.9% of them possessed a normal diploid karyotype. In conclusion, embryos reconstructed by interspecies NT of adult fibroblasts between buffaloes and cattle developed to blastocysts, but bovine cytoplasts may direct embryonic development more effectively than buffalo cytoplasts, regardless of donor cell species.  相似文献   

2.
Successful nuclear transfer (NT) of somatic cell nuclei from various mammalian species to enucleated bovine oocytes provides a universal cytoplast for NT in endangered or extinct species. Buffalo fetal fibroblasts were isolated from a day 40 fetus and were synchronized in presumptive G(0) by serum deprivation. Buffalo and bovine oocytes from abattoir ovaries were matured in vitro and enucleated at 22 h. In the first experiment, we compared the ability of buffalo and bovine oocyte cytoplasm to support in vitro development of NT embryos produced by buffalo fetal fibroblasts as donor nuclei. There were no significant differences (p > 0.05) between the NT embryos derived from buffalo and bovine oocytes, in fusion (74% versus 71%) and cleavage (77% versus 75%) rates, respectively. No significant differences were also observed in blastocyst development (39% versus 33%) and the mean cell numbers of day 7 cloned blastocysts (88.5 +/- 25.7 versus 51.7 +/- 5.4). In the second experiment, we evaluated the effects of activation with calcium ionophore A23187 on development of NT embryos after electrical fusion. A significantly higher (p < 0.05) percentage of blastocyst development was observed in the NT embryos activated by calcium ionophore and 6-DMAP when compared with 6-DMAP alone (33% versus 17%). The results indicate that the somatic nuclei from buffalo can be reprogrammed after transfer to enucleated bovine oocytes, resulting in the production of cloned buffalo blastocysts similar to those transferred into buffalo oocytes. Calcium ionophore used in conjunction with 6-DMAP effectively induces NT embryo development.  相似文献   

3.
The present study examined the effect of elevated Ca(2+) concentration in fusion/activation medium on the fusion and development of fetal fibroblast nuclear transfer (NT) porcine embryos. Frozen-thawed and serum starved fetal fibroblasts were transferred into the perivitelline space of enucleated oocytes. Cell fusion and activation were induced simultaneously with electric pulses in 0.3 M mannitol-based medium containing 0.1 or 1.0 mM CaCl(2). Some fused embryos were further activated 1 hr after the fusion treatment by exposure to an electric pulse. The NT embryos were cultured in vitro for 6 days. Fusion and blastocyst formation rates were significantly (P<0.05) increased by increasing the Ca(2+) concentration from 0.1 mM (67.1 and 6.3%) to 1.0 mM (84.7 and 15.8%). However, no difference in the number of cells in blastocysts was observed between the two groups. A higher percentage of blastocyst was also observed when control oocytes were parthenogenetically activated in the presence of elevated Ca(2+) (19.3% vs. 32.4%, P<0.05). When the reconstituted oocytes were fused in the medium containing 1.0 mM CaCl(2), increasing the number of pulses from 2 to 3 or an additional activation treatment did not enhance the blastocyst formation rate or cell number in blastocysts. These results demonstrate that increasing the Ca(2+) concentration in the fusion/activation medium can enhance the fusion and blastocyst formation rates of fetal fibroblast NT porcine embryos without an additional activation treatment.  相似文献   

4.
Nuclear transfer was used to study nuclear reprogramming of fetal diploid bovine germ cells collected at two stages of the fetal development. In the first case, germ cells of both sexes were collected during their period of intragonadal mitotic multiplication at 48 days post co?tum (d.p.c.). In the second case, only male germ cells were collected after this period, between 105 and 185 d.p.c. Isolated germ cells were fused with enucleated oocytes. Reconstituted embryos were cultured in vitro and those reaching the compacted morula or blastocyst stage were transferred into synchronous recipient heifers. Of 511 reconstituted embryos with 48 d.p.c. germ cells (309 males and 202 females), 48% (247/511 ) cleaved; 2.7% (14/511 ) reached the compacted morula stage and 8 of them the blastocyst stage (1.6%). No difference was observed between sexes. All 14 compacted morulae/blastocysts were transferred into 6 recipients and one pregnancy was initiated. This recipient was slaughtered at Day 35 and an abnormal conceptus (extended trophectoderm and degenerated embryo) was collected. Its male sex, genetically determined, corresponded to that of donor fetus. Of 380 reconstituted embryos with male 105 to 185 d.p.c. germ cells, 72.1% (274/380 ) cleaved, 2.1% (8 380 ) reached the compact morula stage and 7 of these the blastocyst stage (1.8%). Three blastocysts and one morula were transferred into 4 recipients. Two became pregnant at Day 21 but only one at Day 35 which aborted around Day 40. Our results show that the nucleus of diploid bovine germ cells of both sexes can be reprogrammed. However, in the absence of further development of these reconstituted embryos, nuclear totipotency of bovine diploid germ cells remains to be evidenced.  相似文献   

5.
We have examined the reprogramming ability of donor fibroblast nuclei in various phases of the cell cycle, upon transfer to cytoplasts, using a bovine nuclear transfer (NT) model. Bovine fetal fibroblasts were cultured in reduced serum and conditioned medium to induce quiescence (G0) and treated with nocodazole to induce M phase arrest. Unsynchronized actively dividing cells (control) were mainly in G1. Cells synchronized in G0, M, and G1 phase were transferred to enucleated bovine MII oocytes by direct injection using the Piezo-Drill microinjector. NT oocytes were artificially activated following injection. Cells at the M phase were also transferred to enucleated oocytes after artificial activation. Cells induced into quiescence by serum starvation and unsynchronized donor cells produced the highest rates of development to the morula/blastocyst stage (20% and 18%, respectively). Development to blastocyst was significantly higher in parthenogenetic controls compared to NT embryos. The transfer of M phase nuclei to MII cytoplasts was not associated with high development to the blastocyst stage. Nevertheless, determining the viability of these embryos requires transfer to recipient animals and assessment of in vivo development.  相似文献   

6.
In this study, we compared the developmental capacity of bovine haploid and diploid androgenetic and parthenogenetic embryos obtained by different methods. Androgenetic embryos were produced by piezo-intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF) of enucleated oocytes with or without subsequent pronuclear transfer from one haploid zygote to another. Parthenogenetic embryos were obtained by activation of matured oocytes by ionomycin combined with cycloheximide or 6-dimethylaminopurine (DMAP) treatment. Only few cleaved androgenetic haploid embryos were able to compact (2.7%) and to form blastocysts (1.8%), while significantly more haploid parthenogenotes underwent compaction (24-37%) and a minority developed to blastocysts at different rates, depending on the activation procedure (cycloheximide 3%, 6-DMAP 14.5%). By contrast, development to blastocyst of diploid androgenotes, cloned androgenetic embryos, and parthenogenotes (31%, 39%, and 43%, respectively) was similar to IVF control embryos (35%). Cell number on Day 7 was higher for IVF blastocysts and decreased in consecutive order in diploid androgenotes, diploid parthenogenotes, and haploid uniparental embryos. Following transfer of diploid androgenetic embryos, a pregnancy was established and maintained up to Day 28.  相似文献   

7.
Pronuclear formation, and the chromosomal constitution and developmental capacity of bovine zygotes formed by intracytoplasmic sperm injection with freeze-dried (lyophilized) spermatozoa were evaluated. Frozen-thawed spermatozoa were selected, freeze-dried, and stored at 4 degrees C until use. After 22-24 h of in vitro maturation oocytes were denuded and injected singly with a lyophilized spermatozoon. Injected oocytes were activated by treatment with 10 microM ionomycin (5 min) alone and in combination with 1.9 mM 6-dimethylaminopurine (DMAP) for 4 h. Ionomycin plus DMAP activation treatment resulted in a significantly higher proportion of sperm-injected oocytes with two pronuclei than was found after activation with ionomycin alone (74% vs. 56%; P < 0.03). The rates of cleavage, morula, and blastocyst development of sperm-injected oocytes treated with ionomycin plus DMAP were higher than after activation with ionomycin alone (63.3%, 34.2%, and 29.6% vs. 44.7%, 18.7%, and 10.6%, respectively; P < 0.05). Seventy-three percent of blastocysts produced with lyophilized sperm were diploid. These results demonstrate that in vitro-matured bovine oocytes can be fertilized with freeze-dried sperm cells, and that resultant zygotes can develop into karyotypically normal blastocysts.  相似文献   

8.
Supplementation of synthetic oviduct fluid (SOF) medium plus amino acids and bovine serum albumin (BSA) with either fetal calf serum (FCS) or charcoal-treated FCS (CT-FCS) from Day 5 of development was investigated to determine if either in vitro or post-transfer development was altered. Development to the compact morula stage or beyond was similar for all 3 treatments. However, blastocyst development at Day 7 was accelerated when serum was added to the medium (21.6, 40.1 and 39.4% blastocysts from cleaved embryos for BSA, FCS and CT-FCS, respectively; P < 0.01), but cell number of the resulting embryos was unaffected. Furthermore, addition of CT-FCS decreased the between replicate variation in embryo development and produced more Grade 1 and 2 quality embryos (25.8%) than BSA supplementation (18.1%; P < 0.05). The transfer of Grade 1 and 2 embryos at Day 7 following culture resulted in similar pregnancy and embryo survival rates for the 3 treatments, with a tendency for lower embryo survival of embryos cultured in FCS (embryo survival at Day 50 = 37.7% vs 53.3% and 57.6% for FCS, BSA and CT-FCS, respectively; P = 0.1). Significant fetal loss from Day 50 to term occurred within all 3 treatments. There were no birth weight differences for calves amongst the 3 culture treatments; however, one of the sires produced calves that were significantly heavier than expected, suggesting a possible sire-by-embryo interaction. These results demonstrate that addition of FCS may promote blastocyst development; however, there was also a tendency for lower embryo survival. Thus charcoal treatment of FCS is recommended, because it decreases variability in embryo development between runs and results in embryo survival rates to term similar to that BSA-supplemented media.  相似文献   

9.
萨能奶山羊是著名的奶用山羊品种,波尔山羊则是世界著名的肉用山羊品种。为了研究波尔山羊体细胞在奶山羊卵母细胞中的去分化,我们针成年波尔山羊的颗粒细胞或耳皮肤成纤维细胞作为供核细胞(试验组),移入奶山羊中Ⅱ期的去核卵母细胞透明带下,经电融合和离子霉素与6-二甲基氨基嘌呤-DMAP)激活,直接移入同期发情奶山羊输卵管或经体内培养,将发育的重构胚移入同期发情羊子宫内。妊娠早期作B超诊断,确立妊娠的观察至足月。同时将奶山羊的35日龄胎儿成纤维细胞作供核细胞(对照组),按试验组同样方法处理,将重构胚直接移入同期发情的奶山羊输卵管内。结果:试验组,波尔羊颗粒粒细胞与耳皮肤成纤维2细胞的融合率分别为78.2%(115/147),57.4%(116/202),重构胚卵裂率为85.8%(115/134),桑椹胚,囊胚的发育率38.8%(52/134),早期妊娠三头,分别于妊娠40,60,60日龄终止妊娠。对照组,融合率为89.5%(136/152),早期妊娠率为42.9%(6/14),四头受体足月分娩,产四头公羊羔,其中三头存活,一头分娩时死于肺不扩张,并体重过大,显示胎儿过大综合症。经基因型鉴定证实,这四头克隆羔羊均源于同一胎儿成纤维细胞系。以上结果表明,波尔羊体细胞核在奶山羊卵母细胞中能够去分化,并维持一定程度的发育。  相似文献   

10.
The developmental potential of bovine fetal fibroblasts was evaluated using nuclear transfer. Fibroblasts from a 37-day-old fetus were fused to enucleated oocytes before activation. Nuclei of starved (cultured for 8 days in medium containing 0.5% serum) fibroblasts supported the development of reconstructed embryos to the blastocyst stage significantly better than those of non-starved fibroblasts (39% versus 20%; P < 0.05). When nuclear transfer morulae derived from starved or non-starved fibroblasts were used for re-cloning, the proportion of blastocysts (52 and 55%, respectively) obtained with these embryonic nuclei was significantly higher than it was with fibroblast nuclei used in the first round of nuclear transfer (P < 0.05 and P < 0.001, respectively). After transfer of blastocysts derived from non-starved and starved fibroblasts, respectively, 33% (1/3) and 78% (7/9) of recipients were pregnant on day 30 as assessed by ultrasonography. On day 90, the corresponding pregnancy rates were 33% (1/3) and 63% (5/8). Two live male twin calves, derived from non-starved fibroblasts, were delivered by Caesarean section at day 281 of gestation. This study demonstrates a positive effect of serum starvation on the efficiency of nuclear transfer using bovine fetal fibroblasts. The efficiency of nuclear transfer could be further increased by recloning.  相似文献   

11.
Cloned bovine embryos were produced at the blastocyst stage. Prior to enucleation, oocytes were freed from the zona pellucida. Fibroblasts isolated from the bovine fetus were used as nuclear donors. Pairs of fetal fibroblasts and enucleated oocytes (cytoplasts) were glued in phytohemagglutinin solution under a binocular microscope. The subsequent electrofusion of 39 fetal fibroblast-cytoplast pairs yielded 36 reconstructed one-cell embryos (92.3%). After culturing in synthetic oviduct fluid for 7.5 days, seven cloned embryos developed to the blastocyst stage (19.4%) and six blastocysts were considered fit for transplantation. The applied technique of bovine embryo growth allowed 31.1% zona-free oocytes parthenogenetically activated by to reach the blastocyst stage.  相似文献   

12.
Adult animal cloning has progressed to allow the production of offspring cloned from adult cells, however many cloned calves die prenatally or shortly after birth. This study examined the expression of three important metabolic enzymes, lactate dehydrogenase (LDH), citrate synthase, and phosphofructokinase (PFK), to determine if their detection in nuclear transfer (NT) embryos mimics that determined for in vitro produced embryos. A day 40 nuclear transfer produced fetus derived from an adult cell line was collected and fetal fibroblast cultures were established and maintained. Reconstructed NT embryos were then produced from this cell line, and RT-PCR was used to evaluate mRNA reprogramming. All three mRNAs encoding these enzymes were detected in the regenerated fetal fibroblast cell line. Detection patterns were first determined for IVF produced embryos (1-cell, 2-cell, 6-8 cell, morula, and blastocyst stages) to compare with their detection in NT embryos. PFK has three subunits: PFK-L, PFK-M, and PFK-P. PFK-L and PFK-P were not detected in bovine oocytes. PFK subunits were not detected in 6-8 cell embryos but were detected in blastocysts. Results from NT embryo RT-PCR demonstrated that PFK was not detected in 8-cell NT embryos but was detected in NT blastocysts indicating that proper nuclear reprogramming had occurred. Citrate synthase was detected in oocytes and throughout development to the blastocyst stage in both bovine IVF and NT embryos. LDH-A and LDH-B were detected in bovine oocytes and in all stages of IVF and NT embryos examined up to the blastocyst stage. A third subunit, LDH-C was not detected at the blastocyst stage in IVF or NT embryos but was detected in all earlier stages and in mature oocytes. In addition, LDH-C mRNA was detected in gonad isolated from the NT and an in vivo produced control fetus. These results indicate that the three metabolic enzymes maintain normal expression patterns and therefore must be properly reprogrammed following nuclear transfer.  相似文献   

13.
Lu F  Jiang J  Li N  Zhang S  Sun H  Luo C  Wei Y  Shi D 《Theriogenology》2011,76(5):967-974
The objective was to investigate the effect of recipient oocyte age and the interval from activation to fusion on developmental competence of buffalo nuclear transfer (NT) embryos. Buffalo oocytes matured in vitro for 22 h were enucleated by micromanipulation under the spindle view system, and a fetal fibroblast (pretreated with 0.1 μg/mL aphidicolin for 24 h, followed by culture for 48 h in 0.5% fetal bovine serum) was introduced into the enucleated oocyte, followed by electrofusion. Both oocytes and NT embryos were activated by exposure to 5 μM ionomycin for 5 min, followed by culture in 2 mM 6-dimethyl-aminopurine for 3 h. When oocytes matured in vitro for 28, 29, 30, 31, or 32 h were activated, more oocytes matured in vitro for 30 h developed into blastocysts in comparison with oocytes matured in vitro for 32 h (31.3 vs 19.9%, P < 0.05). When electrofusion was induced 27 h after the onset of oocyte maturation, the cleavage rate (78.0%) was higher than that of electrofusion induced at 28 h (67.2%, P < 0.05), and the blastocyst yield (18.1%) was higher (P < 0.05) than that of electrofusion induced at 25 or 26 h (7.4 and 8.5%, respectively). A higher proportion of NT embryos activated at 3 h after electrofusion developed to the blastocyst stage (18.6%) in comparison with NT embryos activated at 1 h (6.0%), 2 h (8.3%), or 4 h (10.6%) after fusion (P < 0.05). No recipient was pregnant 60 d after transfer of blastocysts developed from NT embryos activated at 1 h (0/8), 2 h (0/10), or 4 h (0/9) after fusion. However, 3 of 16 recipients were pregnant following transfer of blastocysts developed from the NT embryos activated at 3 h after fusion, and two of these recipients maintained pregnancy to term. We concluded that the developmental potential of buffalo NT embryos was related to recipient oocyte age and the interval from fusion to activation.  相似文献   

14.
This study was designed to examine the developmental ability of porcine embryos after somatic cell nuclear transfer. Porcine fibroblasts were isolated from fetuses at Day 40 of gestation. In vitro-matured porcine oocytes were enucleated and electrically fused with somatic cells. The reconstructed eggs were activated using electrical stimulus and cultured in vitro for 6 days. Nuclear-transferred (NT) embryos activated at a field strength of 120 V/mm (11.6 +/- 1.6%) showed a higher developmental rate as compared to the 150-V/mm group (6.5 +/- 2.3%) (P: < 0.05), but the mean cell numbers of blastocysts were similar between the two groups. Rates of blastocyst development from NT embryos electrically pulsed at different times (2, 4, and 6 h) after electrofusion were 11.6 +/- 2.9, 6.6 +/- 2.3, and 8.1 +/- 3.3%, respectively. The mean cell numbers of blastocysts developed from NT embryos were gradually decreased (30.4 +/- 10.4 > 24.6 +/- 10.1 > 16.5 +/- 7.4 per blastocyst) as exposure time (2, 4, and 6 h) of nuclei to oocyte cytoplast before activation was prolonged. There was a significant difference in the cell number between the 2- and 6-h groups (P: < 0. 05). Nuclear-transferred embryos (9.4 +/- 0.9%) had a lower developmental rate than in vitro fertilization (IVF)-derived (21.4 +/- 1.9%) or parthenogenetic embryos (22.4 +/- 7.2%) (P: < 0.01). The mean cell number (28.9 +/- 11.4) of NT-derived blastocysts was smaller than that (38.6 +/- 10.4) of IVF-derived blastocysts (P: < 0. 05) and was similar to that (29.9 +/- 12.1) of parthenogenetic embryos. Our results suggest that porcine NT eggs using somatic cells after electrical activation have developmental potential to the blastocyst stage, although with smaller cell numbers compared to IVF embryos.  相似文献   

15.
16.
As an important step in the nuclear transfer (NT) procedure, we evaluated the effect of three different treatments for oocyte activation on the in vitro and in vivo developmental capacity of bovine reconstructed embryos: (1) strontium, which has been successfully used in mice but not yet tested in cattle; (2) ionomycin and 6-dimethylaminopurine (6-DMAP), a standard treatment used in cattle; (3) ionomycin and strontium, in place of 6-DMAP. As regards NT blastocyst development, no difference was observed when strontium (20.1%) or ionomycin/6-DMAP (14.4%) were used. However, when 6-DMAP was substituted by strontium (3), the blastocyst rate (34.8%) was superior to that in the other activation groups (p < 0.05). Results of in vivo development showed the possibility of pregnancies when NT embryos activated in strontium were transferred to recipient cows (16.6%). A live female calf was obtained when ionomycin/strontium were used, but it died 30 days after birth. Our findings show that strontium can be used as an activation agent in bovine cloning procedures and that activation with a combination of strontium and ionomycin increased the in vitro developmental capacity of reconstructed embryos. This is the first report of a calf produced by adult somatic cell NT in Latin America.  相似文献   

17.
With the ultimate goal of establishing experimental protocols necessary for cloning ferrets, the present study has established parameters for the reconstruction of ferret embryos by nuclear transfer (NT) using G0/G1-phase donor fetal fibroblasts. Cumulus-oocyte complexes were harvested from superovulated ferrets and cultured in maturation medium for 24 h. Matured oocytes were then enucleated and injected with the fibroblast nuclei derived from 14-16-h serum-starved cells. Reconstructed embryos were then activated by a combination of electric pulses and chemical stimulations. Subsequently, the reconstructed and activated embryos were either cultured in vitro or transferred to pseudopregnant ferrets to evaluate their developmental capacity in vitro and in vivo. Our results demonstrated that 56.3% of reconstructed embryos (n = 187) cleaved, while 26.0% and 17.6% developed to morula and blastocyst phases in vitro, respectively. The blastocysts derived from NT embryos demonstrated normal morphology by differentially staining as compared to normal blastocysts developed in vivo following fertilization. In vivo developmental studies at 21 days posttransplantation demonstrated 8.8% of reconstructed embryos (n = 91) implanted into the uterine lining of recipients, while 3.3% formed fetuses. However, reconstructed embryos (n = 387) failed to develop to term (42 days). These results demonstrate donor nuclei of G0/G1-phase fetal fibroblast cells can be reprogrammed to support the development of reconstructed ferret embryos in vitro and in vivo; however, a significant third-trimester block occurs preventing full-term development.  相似文献   

18.
We determined the efficacy of a microdrop vitrification procedure for cryopreservation of bovine oocytes, using vitrified oocytes as cytoplasts for intraspecies and intergeneric somatic cell nucleus transfer (NT). In vitro matured bovine MII oocytes were vitrified in microdrops with a vitrification solution containing 35% ethylene glycol, 5% polyvinyl pyrrolidone, and 0.4 M trehalose. After warming, approximately 80% of the vitrified oocytes were morphologically normal, and their enucleation rate was similar to that of fresh oocytes. The NT embryos constructed with bovine cumulus cells and the vitrified oocytes developed similar to blastocysts constructed with fresh oocytes, although the cell number of NT blastocysts originating from vitrified oocytes was lower than that of the fresh control. In a second experiment, we examined the development of NT embryos constructed with vitrified bovine oocytes and bovine fibroblasts (intraspecies NT embryos) or swamp buffalo fibroblasts (intergeneric NT embryos). There were no differences between the intraspecies and intergeneric NT embryos in fusion, cleavage and development to blastocysts, except for lower cell numbers in the intergeneric NT blastocysts. In conclusion, the efficacy of this microdrop vitrification procedure and the production of swamp buffalo NT blastocysts using vitrified bovine oocytes was demonstrated.  相似文献   

19.
To assess sources of variation in nuclear transfer efficiency, bovine fetal fibroblasts (BFF), harvested from six Jersey fetuses, were cultured under various conditions. After transfection, frozen-thawed lung or muscle BFF donor cells were initially cultured in DMEM in 5% CO(2) and air and some were transferred to MEM, with 5% or 20% O(2) or 0.5% or 10% serum and G418 for 2-3 wk. Selected clonal transfected fibroblasts were fused to enucleated oocytes. Fused couplets (n = 4007), activated with ionomycin and 6-dimethylaminopurine, yielded 927 blastocysts, and 650 were transferred to 330 recipients. Fusion rate was influenced by oxygen tension in a fetus-dependent manner (P < 0.001). Blastocyst development was influenced in a number of ways. Hip fibroblast generated more blastocysts when cultured in MEM (P < 0.001). The influence of serum concentration was fetus dependent (P < 0.001) and exposing fibroblast to low oxygen was detrimental to blastocyst development (P < 0.001). Cells from two of the six fetuses produced embryos that maintained pregnancies to term, resulting in eight viable calves. Pregnancy rates 56 days after transfer for the two productive donor fetuses, was at least double that of other recipients and may provide a fitness indicator of BFF cell sources for nuclear transfer. We conclude that a significant component in determining somatic cell nuclear transfer success is the source of the nuclear donor cells.  相似文献   

20.
Bovine oocyte cytoplasm has been shown to support the development of nuclei from other species up to the blastocyst stage. Somatic cell nuclei from buffalo fetal fibroblasts have been successfully reprogrammed after transfer to enucleated bovine oocytes, resulting in the production of cloned buffalo blastocysts. The aim of this study was to compare the in vitro development of fetal and adult buffalo cloned embryos after the fusion of a buffalo fetal fibroblast, cumulus or oviductal cell with bovine oocyte cytoplasm. The fusion of oviductal cells with enucleated bovine oocytes was higher than that of fetal fibroblasts or cumulus cells (83% versus 77 or 73%, respectively). There was a significantly higher cleavage rate (P < 0.05) for fused nuclear transferred embryos produced by fetal fibroblasts and oviductal cells than for cumulus cells (84 or 78% versus 68%, respectively). Blastocyst development in the nuclear transferred embryos produced by fetal fibroblasts was higher (P < 0.05) than those produced either by cumulus or oviductal cells. Chromosome analysis of cloned blastocysts confirmed the embryo was derived from buffalo donor nuclei. This study demonstrates that nuclei from buffalo fetal cells could be successfully reprogrammed to develop to the blastocyst stage at a rate higher than nuclei from adult cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号