首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
将胶原纤维用三价铁改性后作为载体,通过戊二醛的交联作用将过氧化氢酶固定在该载体上.制备的固定化过氧化氢酶蛋白固载量为16.7 mg/g,酶活收率为35%.研究了固定化酶与自由酶的最适pH、最适温度、热稳定性、贮存稳定性及操作稳定性.结果表明:过氧化氢酶经此法固定化后,最适pH及最适温度与自由酶相同,分别为pH 7.0和25℃;但固定化酶的热稳定性显著提高,在75℃保存5 h后,仍能保留30%的活力,而自由酶则完全失活;固定化酶在室温下保存12 d后,酶活力仍保持在88%以上,而自由酶在此条件下则完全失活;此外,固定化过氧化氢酶还表现出了良好的操作稳定性,在室温下连续反应26次后,相对活力为57%.该研究表明胶原纤维可作为固定化过氧化  相似文献   

2.
以N-琥珀酰壳聚糖为载体固定中性蛋白酶,研究了固定化酶的适宜温度、pH、热稳定性和酸碱稳定性等酶学性质,同时对固定化酶和游离酶的红外光谱图作了分析比较.结果表明:中性蛋白酶经固定化后,最适酶反应pH由7升至8,最适温度没有改变,仍为50℃,所得固定化酶具有较宽的酸碱稳定性范围,在pH 7~9都保持较高活力,并且同定化酶的热稳定性比游离酶有较大的提高.红外光谱分析表明,酶固定化前后的红外光谱图的部分特征峰有较大的差异.  相似文献   

3.
金属螯合载体定向固定化木瓜蛋白酶的研究   总被引:11,自引:1,他引:10  
以磁性金属螯合琼脂糖微球为载体,利用金属螯合配体(IDACu2+)与蛋白质表面供电子氨基酸相互作用的原理,定向固定了木瓜蛋白酶。固定化最适条件为Cu2+1.5×10-2mol/g载体、固定化时间4h、固定化pH7.0、给酶量30mg/g载体。固定化酶的最适反应温度70℃、最适反应pH8.0,固定化酶的热稳定性明显高于溶液酶,固定化酶活力回收为68.4%,且有较好的操作稳定性,载体重复使用5次后固定化酶酶活为首次固定化酶79.71%。  相似文献   

4.
以金属框架结构材料MOF-199为载体对漆酶进行固定化,并对固定化酶的性质进行初步研究。首先,以3-氨基丙基三乙氧基硅烷对载体MOF-199进行表面氨基化修饰,再用戊二醛对载体进行活化,最后对漆酶进行固定化。固定化条件优化结果表明:在漆酶质量浓度0.3 g/L,戊二醛用量1%(体积分数),pH 4.8下固定7 h,制得固定化酶活性最高。对固定化酶的研究发现:最适反应温度为40℃,最适pH为5.2,在连续操作7次后,固定化酶的活力仍能保持在51%。固定化漆酶热稳定性,pH耐受性,贮存稳定性均明显高于游离漆酶。  相似文献   

5.
聚乙二醇二缩水甘油醚(PEGDGE)作为双功能环氧试剂,在实验中被用于交联氨基载体LX-1000EA共价固定化海洋脂肪酶,经过处理后的载体共价固定化脂肪酶具有良好的效果。实验经过单因素初筛和正交试验,得到最佳的交联及固定化条件为0.75%交联剂浓度、交联温度35℃、交联时间3h、载体量1.25g、pH9.0、固定化温度55℃、固定化时间1h。对LX-1000EA-PEGDGE固定化酶与游离酶、戊二醛(GA)交联LX-1000HA-GA的固定化酶进行酶学性质的比较,发现LX-1000EA- PEGDGE固定化酶较游离酶最适反应温度未改变,与LX-1000HA-GA相同的是最适反应pH都由7.0提高为8.0。在最适条件中所测LX-1000EA-PEGDGE酶活达到78.84U/g,固定化改变了游离酶的酸碱耐受性,热稳定性和操作稳定性较游离酶和LX-1000HA-GA固定化酶均有提高。LX-1000EA-PEGDGE的热稳定表现优异,在60℃孵育3h后保留90%酶活;使用5次后仍能残余50%酶活;保存30天酶活仍保留60%。首次使用新型双环氧交联剂PEGDGE交联有机氨基载体共价结合固定化脂肪酶,为更有效的固定化方法提供了技术支持,同时也发现交联剂对固定化酶的性质存在较大影响。  相似文献   

6.
使用LX-1000HFA氨基树脂对N-乙酰神经氨酸醛缩酶(NAL)进行固定化,并对游离酶与固定化酶的酶学性质及稳定性进行了对比研究。结果显示,最佳固定化条件为载体投放量5.0 g,固定化时间12 h,缓冲液浓度1.0 mol/L,pH7.5,温度25℃。在此条件下制备的固定化NAL活力最高,比酶活可达200 U/g湿载体。与游离酶相比,最适反应温度提高了5℃,最适反应pH没有变化,温度和pH耐受性明显提升。同时固定化酶储存稳定性和操作稳定性也显著增强,在4℃条件下储存10 d后其酶活仅损失6%,重复使用10次后仍保持初始酶活的80%。因此,该固定化酶具有良好的温度稳定性、pH稳定性、储存稳定性和操作稳定性,为酶法工业化生产N-乙酰神经氨酸研究提供了理论依据。  相似文献   

7.
壳聚糖固定化德氏根霉脂肪酶的研究   总被引:4,自引:0,他引:4  
研究了壳聚糖吸附和戊二醛交联对脂肪酶固定化条件,在室温条件下将0.4g酶粉溶于pH6.0缓冲液中,加入10g壳聚糖,摇匀,再加入浓度为0.6%戊二醛交联6h,得到固定化酶,酶活力回收率约为54.2%。固定化酶的半失活温度比游离酶的高,半失活温度由游离酶的47℃提高到100℃,最适反应温度由40℃上升至80℃,最适pH由6下降到5.5,固定化酶K’m值由游离酶的Km 50mg/mL增加到56mg/mL。该固定化脂肪酶用于酯的合成;在80℃条件下经过10批次连续水解植物油反应,固定化酶的活力仍保持在82.6%以上。  相似文献   

8.
过氧化氢酶对固定化葡萄糖氧化酶稳定性的影响   总被引:2,自引:0,他引:2  
本文通过重氮盐共价键合法把葡萄糖氧化酶接到交联琼脂糖上制备固定化酶。为了提高固定化酶的使用稳定性,把过氧化氢酶和葡萄糖氧化酶同时接到载体上,并研究了这两种酶在不同比例时对固定化葡萄糖氧化酶活力和稳定性的影响,随着加入过氧化氢酶量的增加,固定化葡萄糖氧化酶稳定性显著增加。所制得的固定化葡萄精氧化酶-过氧化氢酶在25℃下连续使用36h,活力几乎不变,失活半衰期可达1155h。  相似文献   

9.
尼龙网固定化果胶酶的制备及其性质研究   总被引:2,自引:0,他引:2  
用尼龙网作载体,经3-二甲氨基丙胺活化,用戊二醛将果胶酶固定化。所得固定化酶Km值与自然酶接近;对温度的稳定性有较大的提高,100℃保温30min才能使其失活。固定化酶在较宽的pH范围内能保持其正常活力,它对金属离子抑制剂的耐受性有较显著的提高,用0.5%果胶溶液作底物,重复使用10次后酶活力保留44%。固定化果胶酶与自然酶相比较,对不同果汁的澄清效果不同。固定化果胶酶在无保护剂存在的条件下,室温放置四个月活力不减少。  相似文献   

10.
氨基末端磁性载体固定化中性蛋白酶的研究   总被引:3,自引:1,他引:2  
以氨基末端磁微粒为载体,用戊二醛作交联剂,通过共价交联结合法固定化AS1.398中性蛋白酶.可以制备出活力达45 000 U/g磁性固定化酶.探讨了该载体对中性蛋白酶的最适固定化条件,并对磁性固定化酶的热稳定性,储存稳定性、操作稳定性等进行了研究,确定了此载体对酶的固载能力大于200 mg/g(载体),及固定化磁性酶最适pH为7.5, 最适温度为60℃等催化特性.  相似文献   

11.
The covalent immobilization of bovine liver catalase (CAT) on to florisil via glutaraldehyde was investigated. Optimum immobilization pH and temperature were determined as pH 6.0, 10 degrees C respectively, while the amount of initial CAT per g of carrier and immobilization time was determined as 5 mg g(-1) and 120 min, respectively. The Vmax values for free and immobilized CAT were found to be 1.7 x 10(5) and 2.0 x 10(4) micromol H2O2 min(-1) mg protein(-1), respectively, whereas KM values were 33.3 mM and 1722.0 mM respectively. Operational stability was determined by using a stirred batch-type column reactor. Immobilized CAT retained about 40% of its initial activity after 50 uses. It showed higher storage stability than free CAT at 4 degrees C and 25 degrees C. Its storage stability increased with increasing relative humidity (RH) from 0 to 20% of the medium. The highest storage stability was obtained in 20% RH, however, further increase in RH from 40 to 100% significantly decreased the storage stability.  相似文献   

12.
Enzyme immobilization using a low-cost support that allows increasing operational stability and reutilization arise as a great economic advantage for the industry. In this work, it was explored different methods of Thermomyces lanuginosus lipase (NS-40116) immobilization in flexible polyurethane foam (PU). PU polymer was synthesized using polyether and toluene diisocyanate as monomers. PU-NS-40116 immobilized was evaluated in terms of stability in a range of pH (7.0 and 9.0), temperature (24, 50 and 60?°C) for 24?h, and storage stability (room temperature and 4?°C) for 30?days. The results showed that after 30?days of storage immobilized enzyme kept 80% of initial enzyme activity. PU support before and after immobilization process was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Free and immobilized enzymes were compared in terms of hydrolysis of soybean oil. Immobilized enzyme by entrapment was evaluated in successive cycles of reuse showing catalytic activity above 50% even after 5 successive cycles of reuse, confirming the efficiency of immobilization process.  相似文献   

13.
Immobilization and kinetics of catalase onto magnesium silicate   总被引:2,自引:0,他引:2  
Bovine liver catalase was immobilized covalently with glutaraldehyde, or glutaraldehyde+3-aminopropionic acid as a spacer, onto magnesium silicate. The coupling time was determined as 2 h for immobilization. The pH and temperature optima as well as the changes in the kinetics (Km, Vmax, Ea) of the immobilized catalase was observed and discussed. Immobilized catalase preparations showed higher storage stabilities than free catalase. The half-life of free catalase, catalase immobilized via glutaraldehyde and catalase immobilized via glutaraldehyde+spacer were calculated as 2, 55 and 10 days at room temperature and 4, 85 and 107 days at 5 °C, respectively. The operational stability of the catalase immobilized via glutaraldehyde was higher than the catalase immobilized via glutaraldehyde+spacer. The remaining activity of the catalase immobilized via glutaraldehyde was about 90% and that of the catalase immobilized via glutaraldeyde+spacer was about 30% after 20 cycles of batch operation.  相似文献   

14.
Immobilization of catalase into chemically crosslinked chitosan beads   总被引:8,自引:0,他引:8  
Bovine liver catalase was immobilized into chitosan beads prepared in crosslinking solution. Various characteristics of immobilized catalase such as the pH–activity curve, the temperature–activity curve, thermal stability, operational stability, and storage stability were evaluated. Among them the pH optimum and temperature optimum of free and immobilized catalase were found to be pH 7.0 and 35 °C. The Km value of immobilized catalase (77.5 mM) was higher than that of free enzyme (35 mM). Immobilization decreased in Vmax value from 32,000 to 122 μmol (min mg protein)−1. It was observed that operational, thermal and storage stabilities of the enzyme were increased with immobilization.  相似文献   

15.
Having been activated with glutaraldehyde, modified poly(ethylene terephthalate) grafted acrylamide fiber was used for the immobilization of horseradish peroxidase (HRP). Both the free HRP and the immobilized HRP were characterized by determining the activity profile as a function of pH, temperature, thermal stability, effect of organic solvent and storage stability. The optimum pH values of the enzyme activity were found as 8 and 7 for the free HRP and the immobilized HRP respectively. The temperature profile of the free HRP and the immobilized HRP revealed a similar behaviour, although the immobilized HRP exhibited higher relative activity in the range from 50 to 60 °C. The immobilized HRP showed higher storage stability than the free HRP.  相似文献   

16.
The aim of this study was enhancing of stability properties of catalase enzyme by encapsulation in alginate/nanomagnetic beads. Amounts of carrier (10–100 mg) and enzyme concentrations (0.25–1.5 mg/mL) were analyzed to optimize immobilization conditions. Also, the optimum temperature (25–50°C), optimum pH (3.0–8.0), kinetic parameters, thermal stability (20–70°C), pH stability (4.0–9.0) operational stability (0–390 min), and reusability were investigated for characterization of the immobilized catalase system. The optimum pH levels of both free and immobilized catalase were 7.0. At the thermal stability studies, the magnetic catalase beads protected 90% activity, while free catalase maintained only 10% activity at 70°C. The thermal profile of magnetic catalase beads was spread over a large area. Similarly, this system indicated the improving of the pH stability. The reusability, which is especially important for industrial applications, was also determined. Thus, the activity analysis was done 50 times in succession. Catalase encapsulated magnetic alginate beads protected 83% activity after 50 cycles.  相似文献   

17.
Cotton fabric was first oxidized with sodium periodate, and then employed to immobilize catalase. Optimization studies for oxidation of the fabric and immobilization of the enzyme were performed. The properties of the immobilized catalase were examined and compared with those of the free enzyme. A high activity of the immobilized enzyme was obtained when the fabric was oxidized at 40°C and pH 6.0 for 8h in a bath containing 0.20 mol L?1 sodium periodate and the enzyme was immobilized at 4°C for 24h with a catalase dosage of 120.0 U mL?1. The immobilized enzyme exhibited optimum activity at 40°C, while the free enzyme had optimal temperature of 30°C, suggesting that the immobilized catalase could be used in a broader temperature range. Both the immobilized and free enzyme had pH optima of 7.0. The staining test and reusability showed that the catalase was fixed covalently on the oxidized cotton fabric.  相似文献   

18.
Poly(itaconic acid) grafted and/or Fe(III) ions incorporated chitosan membranes were used for reversible immobilization of catalase (from bovine liver) via adsorption. The influences of pH and initial catalase concentration on the immobilization capacities of the CH-g-poly(IA) and CH-g-poly(IA)-Fe(III) membranes have been investigated in a batch system. Maximum catalase adsorption onto CH-g-poly(IA) and CH-g-poly(IA)-Fe(III) membrane were found to be 6.3 and 37.8 mg/g polymer at pH 5.0 and 6.5, respectively. The CH-g-poly(IA)-Fe(III) membrane with high catalase adsorption capacity was used in the rest of the study. The Km value for immobilized catalase on CH-g-poly(IA)-Fe(III) (25.8 mM) was higher about 1.6-fold than that of free enzyme (13.5 mM). Optimum operational temperature was observed at 40 °C, a 5 °C higher than that of the free enzyme and was significantly broader. The optimum operational pH was same for both free and immobilized catalase (pH 7.0). Thermal stability was found to increase with immobilization. Free catalase lost all its activity within 20 days whereas immobilized catalase lost 23% of its activity during the same incubation period. It was observed that the same support enzyme can be repeatedly used for immobilization of catalase after regeneration without significant loss in adsorption capacity or enzyme activity. In addition, the CH-g-poly(IA)-Fe(III) membrane prepared in this work showed promising potential for various biotechnological applications.  相似文献   

19.
选择6种吸附树脂和离子交换树脂对D-泛解酸内酯水解酶进行固定化,筛选出了固定化效果较好的大孔弱碱性丙烯酸系阴离子交换树脂D-380为载体,用先吸附后交联的方法固定化。通过实验对固定化条件进行了优化,得出最佳的固定化条件为:加酶量6U/g树脂、吸附pH7.5、吸附时间4h、吸附温度30℃、交联剂戊二醛终浓度0.1%、交联时间2h。实验表明在此条件下制得的固定化酶有很好的稳定性:固定化酶在连续20次的底物水解反应后,剩余酶活达到71%。当温度达到80℃时游离酶几乎失去酶活,而固定化酶剩余酶活为60%以上。游离酶的pH稳定性范围为pH7~8,而固定化酶为pH6.5~8.5。  相似文献   

20.
纳米磁性壳聚糖微球固定化酵母醇脱氢酶的研究   总被引:1,自引:0,他引:1  
建立了以纳米级磁性壳聚糖微球(magnetic chitosan microspheres , M-CS)为载体固定化酵母醇脱氢酶(yeast alcohol dehydrogenase,YADH)的方法,优化了YADH的固定化条件,考察了固定化酶的性质。结果表明,M-CS 呈规则的圆球形,粒径在30nm 左右,具有较好的磁响应性。酵母醇脱氢酶固定化适宜条件为:50 mg 磁性壳聚糖微球,加入20mL 0.25 mg/mL 酵母醇脱氢酶(蛋白质含量)磷酸盐缓冲液(0.05 mol/L ,pH 7.0) ,在4 ℃固定2h。M-CS 容易吸附酵母醇脱氢酶,但吸附的酶量受载体与酶的比例、溶液的离子浓度、溶液pH的影响明显,而温度对吸附的酶量的影响则相对较弱。相对于游离的酵母醇脱氢酶,固定化酶的最适温度略有升高,可明显改善其热稳定性、酸碱稳定性、操作稳定性和贮存稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号